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PRFFACE 

This LocUttV Series, jointly sponsored bv the Fluid Dynamics Panel, the Consultant 
Exchange Programme of AGARD and the von Karmdn Institute is a follow-up of two 
other Lecture Series on the same general subject.   The aim of this Series is to make fluid 
dynamicists interested in numerical integration techniques familiar with the latest develop- 
ments in the field.   Although emphasis is placed on application some lectures are on 
fundamental mathematical aspects. 

Experience of the last four years has shown that the joint AGARD-VKI Lecture 
I as well as the VKI Courses on Numerical Methods in Fluid Dynamics, held in a 

bi-annual cycle, have established themselves as an internationally recognised forum for 
stimulating discussion and sound learning of this rapidly growing field.   Each year, more 
than a hundred participants from various countries in Europe, USA and Canada have 
attended these Courses.  The success of these Lectures is also reflected by the numerous 
requests received by the National Distribution Centres of AGARD for the previous 
publications:   AGARD Lecture Series 48 (Numerical Methods in Fluid Dynamics) and 
Lecture Series 64 (Advances in Numerical Fluid Dynamics). 

The topics covered in the present Lecture Series comprise numerical stability of 
hyperbolic partial differential equations, foundation and application of the finite-element 
method in fluid dynamics; computational methods for laminar and turbulent boundary 
layers in two-and-three-dimensional flows, numerical solution of the Navier-Stokes 
equation and separated transonic and supersonic flows at high Reynolds numbers.   Finally, 
it is pointed out that the first results obtained with the new Illiac IV computer for viscous 
flow simulation are being discussed in this Lecture Series 

Egon KRAUSE 
Lecture Series Director 

in 
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FLOW ANALYSIS THROUGH NUMERICAL TECHNIQUES 

Egon Krause 
Aerodynamisches Institut 

Rheinisch-Westfälische Technische Hochschule Aachen 
Aachen,   Germany 

SUMMARY 

Flow analysis by using  numerical   techniques is demonstrated in this article.   Results obtained 
from integrations of the governing equations are compared with experimental data of the recent literature. 
The following problems will be discussed: The inviscid flow about a sphere at supersonic Mach-numbers 
ranging from   M^ - 1.08 to   M^  ■ 5.0,   calculated with Rusanov's algorithm; incompressible and com- 
pressible laminar and turbulent boundary layers on infinite swept wings,  calculated with second- and 
fourth-order accuracy for three different scalar closure assumptions.  Hypersonic laminar and turbulent 
slot injection of frozen flow (He and H2) and flow in approximated chemical equilibrium (H2).   Finally 
applications of finite-difference solutions will be discussed for fully viscous flows in bio-fluidmechanical 
problems. 

1. INTRODUCTION 

Rapid development of new numerical integration procedures has provided the fluid mechanician 
with new tools for flow analysis.   During the past decade numerical  techniques have been applied in all 
branches of the field with increasing number.  A survey recently made in Ref.   [l]   shows   that in the 
leading scientific engineering journals the number of articles using predominantly numerical methods has 
increased from one percent in 1963 to 15-20 percent in 1973 of all articles published.   It is also interesting 
that the new methods were immediately used for design purposes.   For example,   in Ref.   [2] a finite- 
difference solution of the small perturbation form of the potential equation was employed to determine the 
inviscid surface pressure distribution of the three-dimensional flow about the whole airfoil of the C-141 
airplane.   This is a remarkable advancement and it is safe to say that in the future design of aircraft and 
spacecraft will rely more heavily on prediction methods than was possible in the past.   Pressure distribu- 
tions will to a greater extent be determined from numerical integration of the Euler equations as skin- 
friction coefficients will be obtained from finite-difference  solutions of Prandtl's boundary-layer equa- 
tions for three-dimensional flows.   This is of importance since control of the boundary layer on wings 
and other wetted surfaces can result in substantial drag reduction.  Some of the goals which can be 
achieved in the near future were recently described in Ref.   [3J.   If it is possible to control the boundary 
layer to such a degree that a large portion of the flow can be maintained laminar,   ten to twenty percent 
lower operating costs in comparison to the "turbulent" design would result.   However,   before such pre- 
dictions become possible,   more powerful methods of analysis than those presently in use will have to be 
developed.   For this reason,   it will be interesting to see how the fourth computer generation,   to be in 
operation soon,   will affect the advancement of numerical techniques.  Although the new parallel machines 
will not  cure our stability or convergence problems and although they will force us to develop new methods 
of solutions and programming techniques,   they will cut down computation times by a factor of the order 
of one hundred,   perhaps more.   This decrease in computation time will bring a number of problems which 
could not be tackled until now into our reach. 

In this article a few results of recent flow calculations will be described in comparison to experi- 
mental data.   The purpose of this comparison is twofold: First,   to demonstrate the accuracy of presently 
available finite-difference solutions and secondly,   to show   the degree of complexity of the flow problems 
which can be solved.   We begin with finite-difference solutions of the Euler equations for supersonic flow 
about a sphere and continue with a description of complex boundary-layer problems and finally fully 
viscous incompressible internal flows. 

2. THREE-DIMENSIONAL SUPERSONIC INVISCID FLOWS ABOUT BLUNT BODIES 

There are several algorithms available through which such flows can be determined.  Of the artificial 
viscosity methods Rusanov's algorithm has often been claimed to be superior in accuracy in comparison 
to others.   The particularities of the method are mainly based on the introduction of artificial flux terms 
for friction,  conduction and diffusion with variable artificial  transport coefficients.   In addition   of more 
practical importance is the use of different step sizes in the finite-difference formulation.   However, 
the accuracy of Rusanov's method could so far only be achieved in long computation times.   Relatively 
small time steps had to be employed in the integration as the limiting time step derived by Lyubimov and 
Rusanov from a stability analysis for frozen coefficients appeared to be very restrictiv.   In addition a 
large number of iterations had to be carried out during the transient period.   In order  to overcome this 
difficulty,   Förster,  Roesner and Weiland attempted trial calculations with the aim to detect as to whether 
or not the stability condition as given by Lyubimov and Rusanov could not be loosened for the first phase 
of the integration.   This attempt proved to be successful as several comparison calculations have shown. 
In addition the method seems to be well suited for supersonic flow calculations for Mach numbers only 
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slightly larger than unity.  Before we discuss results for such flows we will demonstrate the accuracy 

of the method for hypersonic Mach numbers:     The surface pressure,   the density distribution along the 

z-axis between stagnation point and shock,   the shock shape and the sonic line as determined experiment- 

ally for a sphere by Sedney and Kahl [4] agree well with the predictions described in Ref.   [5]    .   This 

is shown in Figs.   1-3     ,   where for a hypersonic Mach number of   MQ-, - 5,   pressure coeffient,  non- 

dimensionalized density shock shape and sonic line are plotted versus normalized coordinates indicated 

in the Figs.   Because of the very satisfactory agreement between measured and calculated pressures, 
shock shape and sonic line in Figs.   1 and 2,   it can be concluded that there are some anomalies in  the 

measured density distribution,   in particular the three points in the middle of Fig.   2. 
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Fig.   1     Surface pressure distribution on a sphere 
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+ ) Moo " 1.079 and MQ-, = 1. 109. The comparison in Fig. 7 ' shows that 

measured data with sufficient accuracy although the free-stream Mach 
exactly the same as that of the experiments. 

With decreasing free-stream 

Mach number the rate of convergence 

increases markedly.  Yet the accura- 

cy of Rusanov's method remains the 

same as for high supersonic or 

hypersonic flows.   Gooderum's and 

Wood's density measurements on 

the surface and along the z-axis 

of a sphere [6J confirm the accura- 

cy of the results obtained in Ref. [5]. 

A comparison of calculated and 

measured data is given in Figs.   4 

and 5+'.   The shock shape is equally 

well predicted (Fig.   6) for M^» 1.3. 

Some further comparisons are 

shown for even a lower Mach number 

in Fig.   7.   In Ref.   [7] Stilp deter- 

mined experimentally the slope of 

the front shock of a sphere for free- 
stream Mach numbers as low as 

Rusanov's method predicts the 

number of the calculation was not 

M^r 5.017 

x = U 

O    EXPERIMENTS, REF M 

  RUSANOV-ALGORITHM.REF[5] 

In the integration of the transonic flow fields 
the number of net points varied between 17 and 13 

in the direction normal to the surface and between 

34 and 27 in the tangential direction.   Details of 

the method of integration are described in [sj. 

Reduction of computation time was shown to be 
possible.   First results are reported in L9J«   By 

means of a detailed stability analysis in particular 

of the implicit part of the solution, a substantial 

increase in the rate of convergence  was   obtained. 
These investigations will be published in the near 
future. 

Rusanov's method has in the meantime been 
applied to flow fields about sphere-cone combina- 

tions at angle of attack.   It is reported in [5] that 
the convergence rate is fast as long as the super- 
sonic part of the flow field is kept small. 

3.     THREE-DIMENSIONAL BOUNDARY LAYERS 

"* 0 5 E 
Considerable progress has been made in the 

development of integration methods for three- 

dimensional boundary layers.  A description of a 
method adapted to infinite swept wings is given 

in [l0]; a more general method is described in 

[ll] and [12].   Both second-and fourth-order accuracy can be used in implicit,   locally linearized difference 
equations.   Eddy viscosity models can easily be incorporated in the integration procedures [lOJ.   Care 

must,   however,   be exercised in the calculation of turbulent flows in general and of large cross-flows. 

Because of large velocity gradients near the wall and large variations of the cross correlations in the 
outer portion of the boundary layer  large numerical errors may occur.   These may then falsify the pre- 

+ ) 
The data shown in Figs.   2,   3,   5,   and 7 were provided by C.  Weiland who carried out the details 
of the integration described in Ref.   [5]. 

0 
BODY 

Fig.   2 

1.0 
SHOCK 

Density distribution between shock and 
body of a sphere    ' 
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.25      0 1.0   z/R     15 
Fig.   3      Shock shape and sonic line in an inviscid 

flow field about a sphere   ' 

diction considerably and in comparison to 
experiment wrong conclusions may be drawn 
for the validity of the closing assumptions. 
For  large crossflows the scalar assumption 
often employed in eddy viscosity models 
brakes down. 

For laminar flows there are,   in general 
no major difficulties as long as all  derivatives 
are of order unity.   Several boundary-layer 
flows over swept wings with infinite aspect 
ratio have been analysed with the method of 
solution described in [lOj.   The following 
results were obtained for free-stream Mach 
numbers   M^ - 0. 649,   0. 749 and 1. 298 and 
Reynolds numbers of approximately 3- 106. 
The sweep angle   f   of the wing was assumed 
to be zero for the first Mach number,   30° for 
the second and 60    for the third.   The pressure 
distribution was determined experimentally 
for the upper surface of the wing in [l3J.   In 
all three cases considered supersonic flow 
exists and extends 20 percent of the chord, 
where a shock can be identified.   The pressure 

w(°)  120 

Surface density distribution 
on a sphere 

2b 
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15 

10 
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 RUSAN0V -ALGORITHM 

REF15) 
I         1         i         1         I 

1.0      9 
SHOCK 

t   8       7 1       0 
BODY 

Fig.   5     Density distribution along the z-axis 

of supersonic flow about a sphere   ' 

coefficient is depicted in the upper part of Fig. 8. 

The boundary-layer characteristics were deter- 

mined with an adapted version of the solution for 

fully three-dimensional flows of [ll].   The modifi- 

cation of the solution was carried out by 

E.H.  Hirschel,   who also provided the data shown in Fig.   8.   The skin friction attains a maximum a short 

distance downstream from the stagnation line.   For   / ■ 0    the maximum is about two and one half times 

higher than for f ■ 60  .   Separation is observed at about 20 percent of the chord. Considerable flow 

deflection in the boundary layer takes place near the maximum of the shearing stress.   For f ■ 60°, the 

direction of the limiting stream-lines near the wall deviates by some 20° from that of the external flow. 

An incompressible boundary layer on a swept wing of infinite aspect ratio was investigated experi- 

mentally by Altman and Hayter [l4j and more recently by Adams [ 15],  who developed a second-order 

finite-difference solution for infinite-swept wing conditions.   The pressure distribution is that of the 

NACA 63J-012 section airfoil at zero angle of attack.   In the experiments transition was artificially 
enforced at 20 percent of the chord for a Reynolds number   of  5. 4- 106,   zero lift conditions and a sweep 

angle of   / - 45   .   The skin friction coefficients as calculated with the solution of Ref.   [lOJ are shown 

in Fig.   9.   The integration was carried out by U.  Müller of the Aerodynamische Institut with a second- 

order solution (abbreviated 2.0 in Fig.   9 and subsequent Figs.) together with the closure relations equa- 

tions (2. 18) and (2. 19) of Ref.[ lOJ, which yield almost the same results except for a short distance down- 
stream from the point where transition was enforced. 
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A/R=0.992- 

Fig.   6     Shock shape and sonic line in an 

inviscid flow field about a sphere 
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Fig.   7      Angle of the front shock about a sphere 

near sonic conditions   ' 
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Fig.   9       Skin-friction coefficient calculated 

with the solution of Ref.   [lOJ for the 

measurements of Ref.   [l4j 

In Fig.   10 of Ref.   [lOj,   the displacement 

thickness <f* and momentum thickness   9 

0 

Fig.   8 

004 0 08 012 016 X/C 022 

Pressure-,   skin-friction coefficient and 

flow turning angle in a laminar compressible 

boundary layer on the upper surface of a 

swept wing with infinite aspect ratio 

as calculated with the   solution of Ref.   [l5J 

and of Ref.   [lOJ are compared with the 

experimental data,   which correspond to 

those    shown   in Fig.   9.   Deviations from 

the measured data can be noted immediately 

downstream from the transition point,   but 

otherwise   the accuracy of all three predic- 

tions is acceptable.   The displacement and the momentum thickness are evaluated for the x-component alone. 

The small deviations in the predictions are due to the differences in the closure assumptions and can also 

be noted in the velocity profiles (Fig.   11).  At 50 percent chord the predictions obtained with the closure 

assumptions (2. 18) and (2. 19) of Ref.   [lOJ show slightly fuller velocity profiles than those of Ref.   [is]. 

Further downstream at x/c = 0. 6 all three predictions give virtually the same values; moreover,   the agree- 

ment with the measurements is indeed good but not surprising since the pressure gradient is very small. 

The exchange coefficients are then at least approximately the same and the scalar assumption is justified. 

On the other hand,   the comparison in Fig.   1 1  does not fully confirm the validity of the three closure 

assumptions for  three-dimensional boundary layers.   Since the pressure gradient in the y-direction 

vanishes identically and is small in the x-direction the flow deviates only little from constant pressure 

conditions in the vicinity of 50 to 60 percent of the chord. 
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Fig.   10      Comparison of measured displacement 

and momentum thickness of Ref. [l4J 

with predictions of Ref.   [l5]andof 

Ref.   [l0] 

8        9 
STATION 

Fig.   12      Comparison of measured skin-friction 
coefficients with predictions of present 

second- and fourth-order solution.   The 

curve which ends at point 8 is the pre- 

diction of Ref.   [l7j.   The dashed lines 

give the skin-friction for cf*based on 
the u-component of the velocity. 

001 

z/L 

0 008 

0006 

0004 
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1       1 
Re = 5 U 106 
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.    UOD £^7/ - 
■EQ 218.2 0 -J 

/ /   Y pn ?IQ -> n~J 

EXPERIMENTS OF REFuf/ 
1                     1 II 

REF15J7 
X 
c = 05 

«- 
06    j 

u~~U uir V 

0       0.2     0 4     06      02     04      06     u.v       10 

Fig.   1 1       Comparison of measured velo- 
city profi les of Ref.   [14] with 
predictions of Ref.   [l5J and 
of Ref.   [l0] 

Large pressure gradients in the x-direc- 
tion were enforced by van den Berg and 
Elsenaar in their experiment on an infinite 
swept wing [l6j.   The oncoming flow of the 
free-stream is incompressible with a Reynolds 
number of about 3. I« 10   .   The sweep angle is 
35° and the pressure gradient is positiv and 
large enough to lead to separation.   W. Kordulla 
of the Aerodynamische Institut carried out 
calculations in which all three closure assump- 
tions,   equations (2. 18),   (2.19),   and (2. 21) of 
Ref.   [lO] were employed.   Both,   second- and 
fourth-order algorithms were used. 

The range of predictions is shown for the 
shearing stress in the upper part of Fig.   12. 
Although there is agreement downstream from 
the leading edge of the wing,   the predictions 
fail near separation.   The details of the calcu- 
lation are shown in the middle of Fig.   12.   It is 
seen that the inclusion of the pressure gradient 
in the closure assumption (2. 21) gives better 
agreement than equations (2. 18) and (2. 19) of 
Ref.   [0]    which are based on the wall shearing 
stress alone.   It is of importance to point to 
purely numerical errors.   Each calculation was 
carried out with second-order (2.0) and fourth- 
order (4.0) truncation errors and substantial 
differences can be noted.   The curve which ends 
at measuring station 8 represents the prediction 
of Ref.   [l7J.   These values were obtained after 
the law of the wall had been modified [l7] and 
adjusted to three-dimensional flows. 

In the lower part of Fig.   12 the predictions 
obtained with the closure assumption (2. 21) are 
replotted for the second- and fourth-order solu- 

tion.   The solid line gives the shearing stress for the case when equation (2. 21) is based on a displacement 
thickness evaluated for both velocity components.   The dashed line gives the skin-friction coefficient for 
a displacement thickness based on the u-component of the velocity alone.  Although there is agreement 
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8        9 
STATION 

Fig.   13       Calculated and measured 
(Ref.   [l6]) flow deflection. 

Predictions with second- and 
fourth-order accuracy of Ref. [lOj. 

with the experimental data for the second-order 

solution,   there is no justification of adopting the 

displacement thickness of the u-component for three- 

dimensional flows. 

The flow deflection as measured in the experi- 

ment of Ref.   [ 1 6J and calculated in the solution of 

Ref.   [lO] is shown in Fig.   13.  Again the assumption 

of colinearity between local shearing stress and 

the projection of the velocity vector is found to be 

invalid near separation. 

A comparison of calculated and measured velo- 

city profiles is given in Fig.   14.   For the measuring 

station 4 all six predictions fall almost together and 

are in agreement with the experiment.   It is seen that 

the difference between second- and fourth-order 

solution is more pronounced in the shearing stress 

than in the velocity profiles.  Near separation the 

predicted exchange of momentum is seen to be too 

large for the x-direction.   This is also indicated in 

Fig.   15 where for the two measuring stations the 

effective viscosities are plotted versus the coordi- 

nate normal to the wall.   Large differences can be 
noted in the outer portion of the boundary layer.  Yet. 

despite the large deviations of equation (2.21) from 

(2. 18) and (2. 19) of Ref.   [lOj the corresponding 

differences in the velocity profiles are small.   For 

more accurate predictions it is therefore necessary 

to investigate the closure 
assumptions for three-dimensional 

flows anew and construct more 

adequate formulations for the outer 

part of the boundary layer. 

It is seen in Fig.   14 that mo- 

mentum transport is too large in 

the direction normal  to the wall. 
This is  particularly    true for the 
u-component.   It is known from ex- 
perimental  investigations that the 

local shearing stress is not co- 
linear with the velocity vector; 

this   indicates that the eddy visco- 
sity depends on all three coordi- 

nates.   Near separation,   variation 

of the pressure in the direction 

normal to the wall influences the 

variation of the shearing-stress 

markedly,   such that it cannot at 

the present time be decided,   which 

of the two effects is the dominant 
one.   Investigations are under way 

at the Aerodynamische Institut In 

order to determine extermentally 
shearing-stress distributions in 

three-dimensional boundary layers. 
Further investigations are necessa- 
ry to explain the deviations between 

second- and fourth-order solutions. 

60 

50 ±/w 
Re 53 MO6 

Measured and calculated velocity profiles. 

Measurements are of Ref.   [l3J. 

4.    TANGENTIAL SLOT INJECTION AT HYPERSONIC SPEEDS 

Tangential slot injection is of importance for surface cooling and external combustion processes. 

It has been shown recently,   that the cooling effectiveness is large enough for practical application. 

Theoretical and experimental investigation   of injection of foreign gases as He or H      has shown that 

simplification of the description of the diffusion process is not possible [l8J.   This result was obtained 

by comparison of a finite-difference solution of Ref.   [l9j with concentration measurements.   The follow- 

ing results of Ref.   [l9j demonstrate the application of the method for various flow conditions.   Fig.   16 
shows the calculated concentration decay for  laminar and turbulent chmically frozen and approximated 
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Fig.    15 Evaluation of closure assumptions for 

the velocity profiles shown in Fig.   14 

chemical equilibrium conditions (flame sheet 
approximation).   It is seen that the decay is 

rapid,   although the turbulent decay is much 

steeper.   Fig.   17 shows the calculated shearing 

stress distribution at the wall for the conditions 

of Fig.   16.    A minimum can be noticed immediately 

downstream from the slot.   While these calcula- 

tions were carried out for zero-pressure- 

gradient-conditions,   Fig.   18 shows the influence 

of positiv and negativ pressure gradients in 

laminar frozen flow.   Separation is obtained in 

the vicinity of the slot,   while in turbulent flows 

separation cannot be observed.   There is a 

noticeable influence on the wall temperature and 

on the length of the flame due to non-vanishing 

pressure gradients.   This can be seen in Figs. 

19 and 20.   In the former the wall temperature 

is plotted versus the downstream coordinate 

while the extension of the flame sheet Is shown 

in Fig.   20.  According to these results positiv 

pressure gradients yield shorter and accelerating 
flows   longer flames in comparison to zero- 

pressure-gradient flows. 

The calculations of the results reported 

here are complicated mainly by three factors. 

Firstly for  laminar frozen flows all diffusion 

fluxes due to concentration gradients must be 

taken into account.   Comparison calculation of 

Ref.   [l8J have shown that assumptions of constant 
Prandtl-,   Lewis- or Schmidt  number  lead to large 

deviations in the concentration profiles.   For 

example,   the Prandtl-number of the gas mixture 
was shown to vary between 0. 4 and 

0. 8 for free-stream Mach-numbers 

of   MQQ- 8.  Constant Prandtl-numbers 
are often justified in homogeneous 

flows.   This is because the tempera- 

ture dependence of the dynamic vis- 

cosity,   the thermal conductivity and 

the specific heat at constant pressure 

are nearly compensated in the Prandtl- 

number.   But the dependence of the 
latter on the concentration is not 
negligible,   resulting in variations of 

more than 50 percent which in turn 

may be responsible in marked changes 
in the concentration profiles.   It is 
also noteworthy that in the descrip- 

tion of the transport coefficients from 

the Chapman-Enskog-theory the 
billard ball model is not sufficiently 

accurate to determine viscosity and 

thermal conductivity.   The Lennard- 

Jones (6, 12)-potential or even more 

generalized (n, m)-potentials  have 

to be incorporated in the integration 

proceaure. 

The second difficulty is intro- 

duced by the flame sheet approxima- 
tion.  As the integration of the gover- 

ning equations for H2~Air mixtures 

for the complete reaction mechanism 

requires  large computation times the 

flame sheet approximation often finds 

application in fluid mechanical pro- 

blems.   In the present problem the 

flame sheet separates two adjacent 

regions in the flow,   in which con- 

vection and diffusion effects alone 
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0 

Fig. 16 
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Concentration decay at the wall for H2-injection for 
laminar and turbulent flows 

77.36 154.73 232.09 309.15    x/h    386.81 
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 chem frozen 
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0 

Fig. 
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17 Shearing-stress distribution at the wall for laminar 

and turbulent flows 
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0.01 0.02 0.03 O.OC        x/L    0.05 

Shearing-stress distribution for positiv and negativ 
pressure gradients in laminar flows 

are present.   The only reaction pro- 
duct HoO is generated along the 
common boundary and in the region 
close to the wall  the molecular O2- 
concentration vanishes and in the 
outer region the ^-concentration. 
The flame sheet assumption necessi- 
tates the integration of a three-point 
initial-boundary value problem,   in 
which the location of the internal 
boundary must be determined.   The 
diffusion fluxes which are discon- 
tinous across the flame sheet yield 
the necessary compatibility condition 
to ensure continuous concentration 
profi les. 

77.36 15C.73s^ J32.09     309A5 x/h 386.81 

0.02 0.0c 0.06 0.08    x/L    0.1 

Fig.   19     Wall  temperature distribution in turbulent 
flows for positiv and negativ pressure- 
distributions 

The third complication is en- 
countered in turbulent flows.   Even 
first-order closure requires very 
small step sizes,   not only because 
of large velocity gradients near the 

15C.73       232.09 x/h 309A5 

0.02 0.0C 0.06    x/L   0.08 

Fig.   20   Influence of pressure gradient 
on the extent of the flame sheet 
in turbulent flow 

wall but also because of the temperature peak in the outer portion of the boundary layer.   Telescoping of 
the grid in the direction normal to the wall does not serve a useful purpose as the maximum value of the 
static temperature   does not occur at the same location where the cross-correlations attain their maximum. 
Further details of the integration procedure developed for this problem may be found in Ref.   [l9J. 

38.68 77.36  0 38.68 77J36 0 38.68     x/h     77.36 

fiem/t--Jl0V 

W-.--4 

 chem frozen 

_ chem equilibrium 

Flame- Sheet-Appro* 

OJ02 

Fig.   21     Comparison of shearing-stress  distribution in the 
vicinity of the slot for different free-stream Mach- 
numbers.   For chemically frozen flows the maximum 
is reached further downstream. 

0.02 

A large influence on the flow 
characteristics is exerted by the 
free-stream Mach number.   This is 
particularly true for the shearing 
stress and the lines of constant 
temperature.   In Fig.   21  the shearing 
stress is shown for free-stream Mach 
numbers 8,   6,   and 4.   It is seen that 
the minimum downstream from the 
slot is shifted to larger x-values 
and increases with decreasing Mach 
numbers.   For  turbulent flows the 
isotherms of the flows with free- 
stream Mach numbers as stated above 
are given in Fig.   22.   At M^, - 4 the 
flame sheets extends further out into 
the stream and causes higher tempe- 
ratures in the outer portion of the 
boundary layer than at     MQQ  - 8. 
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Fig.   22     Lines of constant temperature for chemical equilibrium. 
Other conditions are the same es in Fig.   21 

5.    REMARKS ON NUMERICAL SOLUTIONS FOR BIO-FLUIDMECHANICAL PROBLEMS 

The implantation of artificial heart valves has almost become a routine operation.  Yet heart valves 
still pose a number of flow problems which are not completely understood.   This is not surprising since 
the flow is extremely complex as it is not only three-dimensional but also unsteady.   In particular it is 
the slow separated flow downstream from the valve which tends to trap various particles of the blood, 
thereby enhancing the danger of making the recirculating flow thrombogenic.   In addition,   artificial heart 
valves are definitely hemolytic and thrombus formation may be caused by the destruction of red blood cells 
due to high shearing stresses in the flow.   It is therefore important to know the detailed structure of the 
blood flow through artificial valves.   So far most investigations have been carried out experimentally 
using flow visualisation techniques and pressure measurements,   as for example Naumann's measurements 
of the pressure drop in hear! valves [20J. 

An example of vortex formation and recirculating flow behind an open disc-shaped valve is shown in 
the lower left part of Fig.   23.   The experiment was carried out in the water tank of the Aerodynamisches 
Institut at Reynolds numbers of about 200. 
The picture in the upper left part of Fig. 21 
was obtained through a microscope using a 
tunnel of 0. 3 mm width and a height of 
0. 16 mm with a new technique deviced by 
J.   Lambert [21 J.   The flow medium is a 
mixture of ox-blood and a NaCI solution. 
The dark spots on the downstream side of 
the disc indicate the high concentration of 
red blood cells while the bright spots ex- 
hibit much lower concentrations. 

The first numerical analysis of this 
problem was carried out by Mueller and 
Underwood (Refs.   [22],   [23],   [24]). 
Integrating the Navier-Stokes equations 
numerically they obtained the flow pattern 
shown in the upper right part of Fig.   23. 
Direct comparison to the flow picture in 
the lower left part is not possible as the Fig.   23 
calculation is carried out for steady and 
axisymmetric flow condition with a Rey- 
nolds number of about 200. Although the 
accuracy of the calculation is not fully 

Flow pattern in idealised heart valve. 
Computed lines of constant stream function and 
shearing stress distribution were provided by 
T. J.  Mueller. 

explored,   shearing stress distributions in the flow can be obtained from the integration.   In the lower right 
part of Fig.   23 lines of constant shearing stress are indicated which at the present time cannot be deter- 
mined experimentally.   It can be expected that with improved accuracy of future calculations our understan- 
ding of the flow behaviour in the recirculating region can be much enhanced. 

6.    CONCLUSIONS 

The development of the digital computer has enabled the solution of complex flow problems.  Several 
examples were shown to demonstrate the applicability of numerical solutions.   These include three-dimen- 
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sional supersonic-inviseid flow fields about spheres at transonic free-stream Mach numbers.   Two- 
dimensional  laminar incompressible boundary layers can be predicted to any degree of accuracy.   The 
same is true for three-dimensional  laminar boundary layers,   except that the behaviour of the flow near 
separation is not fully understood.   With the existing models for the Reynolds stresses turbulent flows 
can also be determined with reasonable accuracy.   For small Reynolds numbers separated flows,  velo- 
city and pressure distribution have been obtained from numerical solutions of the Navier-Stokes equa- 
tions.  Although laminar and turbulent flows can be simulated   little is known about transitional flows 
and transition or relaminarisation cannot be predicted. 
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NUMERICAL TECHNIQUES FOR THE SOLUTION OF THE COMPRESSIBLE NAVIER-STOKES EQUATIONS 

AND IMPLEMENTATION OF TURBULENCE MODELS 

Barrett S. Baldwin,* Robert W. MacCormack,+ and George S. Deiwert* 
Ames Research Center, NASA, Moffett Field, Calif. 94035, USA 

SUMMARY 

The time-splitting explicit numerical method of MacCormack is applied to separated turbulent 
boundary layer flow problems. Modifications of this basic method are developed to counter difficulties 
associated with complicated geometry and severe numerical resolution requirements of turbulence model 
equations. The accuracy of solutions is investigated by comparison with exact solutions for several simple 
cases. Procedures are developed for modifying the basic method to improve the accuracy. Numerical solu- 
tions of high-Reynolds-number separated flows over an airfoil and shock-separated flows over a flat plate 
are obtained. A simple mixing length model of turbulence is used for the transonic flow past an airfoil. 
A nonorthogonal mesh of arbitrary configuration facilitates the description of the flow field. For the 
simpler geometry associated with the flat plate, a rectangular mesh is used, and solutions are obtained 
based on a two-equation differential model of turbulence. 

INTRODUCTION 

With continuing advances in both computer technology and computational methods, the fluid dynamicist 
has been able to solve increasingly complex flow problems. Flows governed by the unsteady "compressible 
Navier-Stokes equations" provide an example. In the recent past (refs. 1 and 2), with computers such as 
the IBM 360/67 and CDC 6600, we were able to predict two-dimensional shock-separated laminar boundary layer 
flows at Reynolds numbers of 105. Today, with the CDC 7600, STAR, and Burroughs' 111 lac IV computers, and 
with recent advances in turbulence modeling, we are on the threshold of extending our calculations to 
full-scale-flight Reynolds numbers. 

The field of turbulence modeling has received an Impetus from increasing computer capabilities. Even 
1f the quest for a universal turbulence model (refs. 3-5) eventually proves to be illusory, models tailored 
to particular flows will undoubtedly continue to be Important in engineering applications. The degree of 
complexity that can be tolerated is increasing with the gains in computer speed and capacity. Three- 
dimensional time-dependent solutions of the conservation relations, with enough resolution to compute the 
important turbulent eddies (ref. 6), may become commonplace in the future. Turbulence modeling will still 
be needed for the subgrid scales and near walls. There is a need for more experiments to test the adequacy 
of the turbulence models that are evolving. Development of new experimental techniques such as the laser 
doppler velocimeter (ref. 7) are making essentially disturbance-free measurements possible. Numerical 
solutions of the type described here can aid in the design and Interpretation of the experiments. 

This paper presents results from several investigations that have been previously published 
(refs. 8-11). The turbulence model equations pose a more severe numerical resolution requirement than the 
Navier-Stokes equations. To counter this difficulty, a procedure that utilizes flux correction factors to 
Improve the accuracy of the numerical solution was developed. In the first part of this paper, the ideas 
leading to that concept are described and simple examples demonstrating the principle are presented. 

Only modest progress was made toward the basic goal of testing the adequacy of turbulence models. 
However, knowledge was gained that should be useful 1n the design of future experiments and to improve the 
efficiency of later calculations. It was found that the viscous sublayer of a turbulent boundary layer 
near a separation point is insensitive to the use of the boundary layer approximation, although this 
approximation may be Invalid for the entire boundary layer, depending on pressure gradients. 

Most of the effort in these investigations has gone into development of machine codes that can gen- 
erate solutions of the time-averaged conservation relations coupled to turbulence model equations. 
Numerical solutions of transonic separated flows over a thick airfoil are presented. These solutions are 
designed to provide Insight into the Reynolds-number dependence of such flows. Numerical solutions of 
shock-separated hypersonic turbulent boundary layer flows, based on either a simple mixing-length model or 
a two-equation differential model of turbulence, were obtained. An extreme case (high Mach number and 
strong shock wave) was chosen 1n the hope that techniques would be developed capable of treating the range 
of conditions at which experimental data will become available. 

NUMERICAL METHODS 

Preliminary Considerations 

The two-dimensional mean-flow equations and turbulence model equations to be considered in this paper 
can be written as 

3U . aF . 36 . r m 
at +17+ ay" E • (1) 

where U is a column vector of conserved quantities per unit volume (mass, momentum, energy, turbulent 
energy, etc.). The fluxes F and G are column vectors that contain convection and diffusion terms. The 
components of the source vector E associated with the mean-flow equations are zero. However, nonzero 
source terms appear in the turbulence model equations; for example, those representing production and 
dissipation of turbulent energy. The fluxes and sources are functions of auxiliary variables such as the 
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x component of velocity u and the first derivatives of these variables. The auxiliary variables are 
algebraic functions of the conserved quantities. The specific relationships implied in these statements 
are listed in later sections. The quantities appearing explicitly in equation (1), or linear combinations 
of them, are often smoothly varying compared to the auxiliary variables, a fact which has not been fully 
exploited in numerical solutions. Knowledge of the behavior of the fluxes and sources from a numerical 
solution can sometimes be used to tailor the numerical procedure to obtain a more accurate solution. In 
some cases, it can be shown that use of exact values of the fluxes can produce exact numerical solutions. 

Basic Numerical Method 

To accomplish the goal of computing shock separated turbulent flows, a numerical method is needed 
that can treat shock waves in the inviscid regions and also treat the compressible viscous flow equations. 
MacCormack's [ref.  12) explicit two-step second-order method (a Lax-Wendroff variant) has been widely 
used and has been found to perform reliably in the computation of a variety of inviscid and viscous flows. 

The two-dimensional time-dependent calculations in this paper are based on MacCormack's (ref. 1) 
time-splitting method for solution of the Navier-Stokes equations. The conserved quantity U in equa- 
tion (1) is advanced by a time step Atx as though the aG/ay and E terms were absent, and then by a 
time step Aty in which aF/ax is omitted. The source term, when it is present, is included with 86/ay 
because a sensitive balance develops between E and aG/ay in the solution of turbulence model equations. 
The finite-difference operation utilizes a predictor and corrector sequence. The predictor step in the 
advancement Atx can be denoted by 

5iA * "*• V ■ W V - Sr £*«<«*■ V - Fi-,.j<v ty» <2> 
and the corrector by 

.   %       r.     i. .x        At*   r? Ui:j(tx + Atx,  ty)  •||U1J(tx,  ty)  +Uij(tx + Atx,  ty)  -^[F1 + lJ(tx + Atx,  ty)  -  F.^ + At,,  ty)] 

(3) 

The bar on F indicates that predicted quantities Ü are to be used in the evaluation of fluxes. The 
elements of F represent fluxes (or stresses) that are evaluated in such a manner as to achieve second- 
order accuracy after the predictor-corrector sequence is completed. For example, at the cell surface 
lying midway between mesh points i and i+1, the flux value u is evaluated as ui in the predictor 
and as u-j+1 in the corrector. The stress derivative of u is evaluated as (uj+1 - U-J)/AX in both pre- 
dictor and corrector. The corresponding relations for the advancement Aty are 

Öij<V V + ily) ■ U1j<V ty> " Ty* t<yV V " G1,j-><V ^ + "yElj<V ty)     <4> 

and 

uio<V V ♦ »V ■^ju1J(tx, ty) ♦ ü^v ty ♦ uy) - ^ [i1>j+l(v ty ♦ My) - G^jtv ty ♦ *ty)] 

+ "Al(V ty + 4ty)J • (5) 
The source terms E, when present, are evaluated at the center of the cell being advanced in both predic- 
tor and corrector. 

Let Lv(Atx) denote the pair of operations by which Uji(tx 
+ Atx, ty) is obtained from U-jj(tx, ty) 

and let Ly(Aty) denote the analogous determination of Uji(tx, ty + Aty) from U-jj(tx, ty). MacCormacK 
(ref. 1) has snown that, although the sequence Lx(At)Ly(At) is accurate only to first order in AX and 
Ay, symmetrical sequences such as Ly(At/2)Lx(At)Ly(At/2) retain second-order accuracy. Computational 
efficiency is enhanced by the use or operator sequences of the form 

««> ■ b(£Y*mmn • 
where n is an integer representing the number of operations LyLxLy that are to be applied in one time 
step At. When mesh Reynolds numbers (PUAX/U) are greater than 2, the maximum time step for which the 
calculations will be stable is determined by the CFL (Courant-Friedrichs-Lewy) conditions (ref. 1) 

A* 7      2nAy m.       nAx At < /...'V— and -r—rrv  . 

In regions of coarse mesh, n is set equal to 1 and large values of n (up to 100 in this paper) are used 
in fine mesh regions. Most of the computing time is then spent in the finest mesh, which constitutes a 
small fraction of the total number of computation points. Cumulative values of fluxes at the last cell 
face between meshes are stored during operation in the fine mesh. These values are used to obtain average 
fluxes to be applied during operation in the adjacent coarser mesh. 

Inviscid Burgers Equation inviscia purgers Equation 

For purposes of illustrating the use of knowledge of the solution to improve the accuracy of the 
finite-difference procedure, numerical solutions of the equation 
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!i + ä(H*° (6) 

have been obtained. Kutler (ref. 13) has investigated the ability of several differencing techniques to 
capture the propagating discontinuity that results from the initial conditions 

u(o,x) = 1.0 - SF(x - Xj) (7) 

and the boundary conditions 

u(t.O) = 1.0 , (8) 

u(t,x2) = 0  . (9) 

The function SF(x - xj is the unit step function 

fO, for x < x. 
(10) 

for x, < x 

(0, 

The exact solution of equations (6)-(9) is 

u(t,x) = 1 - SF(x - \ t\  . (11) 

Kutler found that MacCormack's method accurately predicts the position of the discontinuity as a function 
of time, but smears it over several mesh points. The smearing was greatly reduced with CFL numbers 
(CFL 2 umaxAt/Ax) near 1.0. Since CFL numbers well below 1.0 are used in this paper, it is of interest to 
note the performance of MacCormack's method In such cases. 

The differencing used 1n this paper corresponds to evaluation of the flux at cell faces between the 
mesh points. Evaluation of F according to the relations 

Fi+(i/2) = 1 ui2 * for Pred1ctor> (12) 

and 

Fi+(i/2) = 1  "l+i • for corrector» O3) 

leads to second-order accuracy, since, after the predictor and corrector steps are completed, the effect 
is approximately equivalent to averaging the fluxes ät i and i+1 to obtain the value at i+(l/2). For 
solution of equation (6) a uniform mesh with Ax = 0.1 was used. 

Figure 1 shows a comparison with the exact solution of numerical results obtained at a CFL number 
equal to 0.1. At t = 10, the solution has settled essentially into the cyclic behavior shown, which 
repeats itself as the wave front progresses past each mesh point. The position of the wave front, which 
can be deduced from the numerical solution, remains accurate. 

If the exact fluxes at the cell faces between computation points 

Fi*(,/2) 
= 1 [' - SF(X

I+C/2) - 7 *)]' * H1 " 5
F(

X
I*(I/2) " 7 *)] 04) 

are used 1n both predictor and corrector, the numerical solution is exact except at the computation point 
nearest the wave front. The value of u at that point increases from zero linearly with time so that the 
position of the wave front between mesh points can be accurately inferred. The accuracy of the numerical 
solution can be improved by any modification of the basic method that results 1n the use of accurate 
values of the fluxes at the cell faces. For example, the flux can be computed in both predictor and cor- 
rector according to the relation 

n 
Fi+(i/2) 

\*{  , if 1 < (Ui ♦ u1+l) < 1.9 
(15) 

[£uf+1 , If 0.1 < (u. +ui+]) < 1 

and can be computed according to the basic method from equations (12) and (13), if u^ + ui+j is In 
neither of the above specified ranges. The results in figure 2 were computed by this means with a CFL 
number equal to 0.1. Essentially the same accurate solution can also be obtained from the unmodified basic 
method with a CFL number close to 1.0. 

Linear Viscous Equation 

A more useful modification of the basic method results from a study of the linear equation 

»♦*(--•*)-•■ <16> 
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In complicated flow problems, time-dependent solutions are often used as a means of arriving at a final 
steady-state solution that is of primary interest. The steady-state solution of equation (16) that is 
approached as t ♦ • is obtained by setting the flux equal to a constant 

3u cu - v - = -xc (17) 

With the boundary conditions 

and 

the steady-state solution is 

With 

and 

u(t,0) = 0 (18) 

u(t,l) = 1 , (19) 

c = -1 (21) 

v = 0.05 , (22) 

the solution resembles a viscous boundary layer. 

For numerical solutions the initial conditions 

(0 , for x = 0 
(23) 

1.0, for x > 0 

are used. In the basic numerical method, the flux F = (cu - v3u/3x) is evaluated at cell faces between 
mesh points according to the relations 

F1+(i/2) s cu1 + v\\x      I  ' for Predictor> <24) 

and 
/üi + 1 - ÜA 

Fi+(i/2) 
= cui + i + \ Äx )'  for cor^ctor. (25) 

The same formula for the stress derivative is used 1n both predictor and corrector, since the finite 
difference is properly centered about the cell face between mesh points, as required for second-order 
accuracy. 

It is instructive to estimate the truncation error of the numerical solution according to the modi- 
fied equation approach developed by Warming and Hyett (ref. 14). With MacCormack's differencing technique, 
the numerical solution of equation (16) would satisfy exactly the modified differential equation 

ft + "37 (cu " v !x) + § (Ax2 " c2At2) ^ + higher-order terms = 0 , (26) 

which is obtained by Taylor series expansion of solutions of the finite-difference equation. Thus At and 
Ax must be chosen such that the truncation error, the third term in equation (17), does not swamp the 
viscous term that we intend to compute. The requirements for numerical stability are 

At < ^-andi-Mi . (27) 
C      C      V 

It is apparent from equation (20) that, with c = -1 and v ■ 0.05, Ax < 0.1 is required for adequate 
resolution of the boundary layer.  In that case, the second condition in equation (27) is more restrictive 
than the first, and At2 << AX2. The requirement that the truncation error in equation (26) be small com- 
pared to the viscous term is then 

IcAX2 3jll 
I 6  3X 

Iv —I 
3X2| 

Evaluation of these derivatives from equation (20) leads to 

S^jSi « 6 . (28) 

Therefore the mesh Reynolds number |C|AX/V must be small compared to /S". 

A numerical solution of equation (16) has been obtained with the boundary conditions in equations (18) 
and (19), constant values in equations (21) and (22), and initial conditions represented by equation (23). 
A mesh spacing AX = 0.1 was used. In figure 3, the numerical solution is compared to the exact 
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solution represented by equation (20). Since it is often expensive to refine the mesh in practical fluid- 
flow problems, it is of interest to investigate the possibility of improving the accuracy of the numerical 
solution by modifying the numerical method. If we are primarily interested in the final steady-state 
solution, it is not necessary to impose accurate values of the fluxes at all states of the time-dependent 
calculation. The steady-state solution is approximately 

u - 1 * - exp(- £) as t -* - , 

showing that the variation of u - 1 with x can be accurately represented by an exponential. In the 
interval XJ z x * x-j + 1, the exponential variation that passes through uj at Xj and u^ + i at xi + 1 
can be written 

U - 1 - (u, - ,)exp j^)inf!^)] . (29) 

Evaluation at a cell face halfway between mesh points yields 

",+(l/2) ■ 1 - '(ui - U(u1+l - 1) , (30) 

and differentiation of equation (29) leads to 

(c„M • M»e^) ■ 
Accordingly, the flux F = cu - v(3u/3x) 1n equation (16) would be 

W) ■ e - A», - D(ui+1 -1) [c - £ *$f=nr| • <32> 

To use equation (32) in a machine code, it is necessary to avoid the singular behavior that occurs when 
UJ or u-j + 1 approaches 1 too closely. This can be accomplished by replacing the l's in equation (32) 
with 1.01. Use of equation (32) in a numerical solution of equation (16) virtually reproduces the exact 
steady-state solution, as shown in figure 4. This remains true even when the condition for small trunca- 
tion error of the basic method, in equation (28), is violated. In addition, the skin friction 

• -a /x+0 
can still be computed accurately by evaluating the derivative from equation (29) at a point near x = 0. 

Several additional steps can be taken to make the results of the foregoing study more general and more 
useful. Knowledge of the exact solution was used in choosing the l's for equations (29)-(31), but this 
can be avoided. Without specifying the form of the flux F, which can be a nonlinear function of u and 
3u/3x, suppose variations in the interval x^l  < x < XJ + 1 are of the form 

. - A - <., - A)expp^ "(irpnty ■ <33> 

A ■ u„. - 2», * »., • (34) 

Evaluation at x = x^_}    and rearrangement leads to 

(u1+iu1-i-u12> 
Ji+i " 2u1 + ui+, 

To avoid a zero 1n the denominator of this expression, the condition 

|ui + 1 - 2Ui + ulM| > e0(|ui+1| + lujl) (35) 

is imposed with E0 ~ 10"
3. Violation of this condition 1s an Indication that the variation of u is 

nearly linear and the basic numerical method is adequate and needs no modification in the interval 
xi_, < x < Xf+x- However, if inequality (35) is satisfied, A can be computed from equation (34). To 
avoid singular behavior of the logarithm in equation (33), the condition 

(ui+1 - A)(Ui - A) > e0
2(u1+1 

+ u12) W 

is imposed. Violation of this condition is an indication that u 1s nearly constant in the interval 
XJ < x < xi+j and again the basic numerical method would generate accurate values of fluxes at the cell 
face between x^ and x^+1. However, if inequality (36) is satisfied, no singular behavior will occur 1n 
the computation of the relations 

V(i/2) = A + sgn(u1 " A>/(u1+i " A,(u1 ' A) (37) 
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and 

0 „-**^«C^- 
Expansion of uj and U|+1 about (uj+, + Uj)/2 in these relations shows that they differ from the basic 
method in equations (24) and (25) by terms of the order (ui+, - u*)2. Numerical solutions from the basic 
method are accurate to the second order in Ax, and are exact if the variations are polynomials of the 
second degree or less. Numerical solutions based on equations (37) and (38) are also accurate to the 
second order in AX and are exact if the variations are exponential. When the variations are not expo- 
nential, the latter method produces an effect akin to a transformation in which the logarithms are com- 
puted rather than the original variables. It is shown in a later section that this feature is useful for 
the numerical solution of turbulence model equations in boundary layers where the turbulence quantities 
vary through many orders of magnitude. 

For more complicated flow problems, nonuniform meshes are essential to minimize both the required 
storage space and the computation time. When the mesh spacing is not uniform, a procedure different from 
the foregoing is needed, as follows: If variations are of the form 

u - A = B exp(a0x) (39) 

1n the interval x^_j < x < Xj+1, it follows that 

ui+1 - A = B exp(a0x.+1) , (40a) 

ui - A = B exp(a0x1) , (40b) 

u^j - A = B exp(a0xiM) . (40c) 

Elimination of A leads to 

ui+1 - ui = B[exp(a0xi+1) - expfa^)] 

and 

ui - u._x  = B[exp(a0x.) - expfc^x^)] . (41b) 

The ratio of these relations can then be written 

(41a) 

or 

ui+i - ui r    , (1 - exp[a0(xi4.1 - Xi)] 

U1 ■ U1M - «**«0<«1 - x1-i>J{l -exp[a0(x. -x^)] 

(1 - exp[aQ(x1+l - *j)] /ui+l - ui\ 
1 - exp[aQ(x1 - x^)] 

xi * xi-i 
(42) 

The inequalities 

lui - Ui-J > eo(lui+il + 'uil + lMi-iN (43) 

and 

(ui+1 - u,)(u, - ulM) > e0*{uf+1 ♦ u,* - iif.,) (44a) 

are imposed to avoid singular behavior (c0 - 10"
3). If these inequalities are not satisfied, the varia- 

tions are linear or not monotonlc and the basic numerical method (see section on basic numerical method) 
should be used. However, if inequalities (43) and (44a) are satisfied, a0 can be computed (by iteration) 
from equation (42), with the added restriction 

l«0l(xi - xiM) 5 c0 , (44b) 

which is also needed to avoid singular behavior in evaluation of the right side of equation (42). If the 
equality in equation (44b) is the only solution allowed by this restriction, use of that value will produce 
an effect in the following formulas (equations (45)-(49)) that is equivalent to the basic method. Once a 
value of a0 has been arrived at that satisfies inequality (44b), B can be computed using equation (41b) 
and A evaluated from equation (40b). Then, according to equation (39), we obtain 

Ui + (l/2) = A + BeXP[Q0*i + (l/2)] («) 
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and, by differentiation of equation (39), we have 

("Vo/2)= °°l>(1/2)" ^ ■ (46) 

With as much complication as is represented by the use of equations (42)-(46), one might wonder whether 
refining the mesh would entail less computer time in a compute-bound-flow problem. However, if the final 
steady-state solution is of primary interest, it is not necessary to solve the foregoing equations at every 
time step. Instead, correction factors for u-j+(1/^)(Du/8x)i+n/2) can be evaluated periodically and used 
to correct the fluxes computed according to the basic method, from equations (24) and (25), at intervening 
time steps. The correction factors are 

(48) 5U,Hi/2) - ^f1 • corrector. 

C0U.1*(i/2) (Vl - u,)     • P™*Hctor and corrector, (49) 

with uj+fj/jjand (3u/Dx)i+(!/2) evaluated according to equations (40)-(46) and u^, UJ+J obtained from 
the numerical solution at the same timestep. The initial values and default values - failure of inequali- 
ties or zero denominators in equations (47)-(49) - of the correction factors are 1.0. 

Application of the flux correction factors in the problem presently under discussion consists of 
replacing equations (24) and (25) with the respective relations 

and 

Ax"  ]CDU,i+(i/2) 

Fi + (l/2)   =   CUi + lCU,i + (l/2)   +   ^ U /CDU,i + (l/2) 

Numerical solution of equation (16) with correction factors computed every tenth timestep produced the 
same accurate steady-state solution obtained by the earlier modification of the basic method but without 
significant increase in computer time relative to the basic method. 

It 1s important to note that flux correction factors resulting from any other procedure based on the 
properties of the numerical solution could be used similarly to improve the accuracy of the steady-state 
solution. For example, correction factors from higher-order methods that are evaluated infrequently 
rather than at every timestep may enhance the efficiency of a machine code to be used in a compute-bound- 
flow problem. Alternatively, a refined mesh could be used infrequently in critical regions to evaluate 
flux correction factors that would produce accurate steady-state solutions on a coarser mesh. 

Simplified Turbulence Model Equations 

In the viscous sublayer of a turbulent boundary layer, quantities for which differential equations are 
provided by turbulence models vary through several orders of magnitude, thereby posing a severe numerical 
resolution requirement. Complete turbulence model equations are listed in a later section of this paper. 
It is instructive to investigate the properties of a simplified version of the Saffman-Wilcox (ref. 5) 
turbulence model represented by the relations 

3T 
JL(_ ji) . .20<3/2 (50) 

£ + &(- S) " "1P* e* (51) 

The quantity ; represents the square of pseudovorticity (or rate of dissipation) normalized with respect 
to the value at the wall. The quantity es represents the turbulent energy per unit mass of fluid. The 
time t and distance from the wall n have been normalized in a way that simplifies the constant coeffi- 
cients. In the section on turbulence models, equations (50) and (51) are shown to be applicable In a 
portion of the viscous sublayer where the eddy viscosity is small compared to the molecular viscosity and 
the gas density and temperature are approximately constant. 

With the boundary conditions 

c(t,0) ■ 1 , (52) 

es(t,0) = 0 , (53) 

c(t,nn) - cn . (54) 

es(t,nn) ■ eSij , (55) 
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the exact steady-state solution is 

«(-.n) « (c^ - nn ♦ «P (56) 
and 

where 

.  ,  n^-n11^)B-(ti;/>-n„*n)('-n 

m = | (1 + ^T). (58) 

For simplicity, cn and es   have been chosen to be 

«II ■ " + "i,»"* <59> 
and 

so that equation (56) becomes 

and equation (57) becomes 

*» 
(60) 

c(-.n) ■ (1 ♦ nT* (61) 

(1 + nu)m- (1 ♦ nn)l™ 

Suitable Initial conditions for time dependent numerical solution of equations (50) and (51), respectively, 
are 

{1   , for   n s 0 
(63) 

(1 + nMr\ for   n > 0 

and 

|0 , for    n = 0 
es(0,n) ■ \ . (64) 

(l   , for    n > 0 

The variable    n    in equations (50) and (51) is a dimensionless version of the   y   coordinate.    For 
numerical  solution of these equations by the basic method (see section on basic numerical method), the 
fluxes    G    in equation (1) are evaluated at the cell  face between uniformly spaced mesh points according 
to the relations 

and 

G -(!!§}        - esj+i - esj 
es,j+(i/2)     \9n/j+(l/2) An (66) 

and the source terms E are evaluated at the cell centers 

Ec,j ■ - 2(V/2 <67> 

and 

Ees,j = -10^esj  • <68> 

Equations (65)-(68) apply to the predictor. In the present case, the formulas for the corrector are 
identical with unbarred quantities replaced by their counterparts containing bar overscripts. In figure 5, 
a comparison is shown between the resulting steady-state numerical solution according to the basic method 
and the exact solution. The ratio es//£" 1s proportional to the eddy viscosity. A comparison of this 
quantity with the exact values 1s also shown in figure 5. 

In an effort to improve the accuracy of the solution without refining the mesh, the modification of 
the basic method described in the previous section can be used to compute the fluxes. In addition, it 1s 
necessary to compute the source terms on the right sides of equations (50) and (51) more accurately. For 
this purpose, the source term in equation (50), for example, can be expressed as a flux in the form 
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-20c3/2 = T- f - 20<3/2 d* ■ 

The appropriate finite difference expression of this relationship is 

h J = £ J      " 20<3/2 d* ■ (69> 
nJ-(l/2) 

For the purpose of demonstrating the usefulness of flux- and source-correction factors, such factors 
are first derived from the exact solution for ;, as was done in the section on the inviscid Burgers 
equation. The exact solution for c in equation (61) can be used in equation (69) to compute a source- 
term correction factor to be applied in the finite-difference solution, namely, 

rVd/2) 
c3'2dn 

1 + HJ)* I     1        L 
Cr, i - nj'(l/2?.. 

Also from the exact solution of equation (61), the flux correction factor 1s 

Wd/2)' 777: ,sr 4in i   -r ■ <71) 
[1 * nj+d/2)]5[(i +\y 'vr+ nj+1J"»] 

If the basic numerical method represented by equations (65) and (67) 1s modified according to the 
relations 

6 %,i*{l/2)lii*l  • 'l' (72) 
C.J+O/2) An 

and 

Eu ■ W-*f > • (73) 

the resulting steady-state numerical solution is exact except for roundoff errors. Thus, if flux and 
source correction factors can be found by means other than through a thorough knowledge of the exact solu- 
tion, the accuracy of the numerical solution can be Improved without refining the mesh. One way to accom- 
plish this is by assuming that the variations are exponential, as in the previous section. This leads to 
correction factors that will produce an effect roughly equivalent to a transformation in which differential 
equations for the logarithms of the variables are solved numerically rather than solving the original equa- 
tions, although no such transformation is actually carried out. If the mesh is uniform, the procedure for 
the flux correction factor 1s given by equations (34)-(38) and (47)-(49). For a nonuniform mesh, equa- 
tions (40)-(46) replace (34)-(38). It should be reemphasized that it is not necessary to compute the flux 
correction factors at every timestep if only the steady-state solution 1s of interest. 

The source correction factor corresponding to exponential variations requires further development. 
If the variation of E is of the form 

E = A + B exp(a0n) (74) 

in the interval    n* ft/*! < n < ni+(i/2)' ^ follows, by integration, that 

/ %   E *  "   A[vd/2)   "   VO/2)]   + f (4oV(»/2)]   "   eXP[Vj-(l/2)]|   • 
j-(l/2) ° ' 

and the source correction factor becomes 

BJe»p[g V(l/2)] ■ .»p[y, (1/2J) 
E>J   *J        °°|>ü/2) " "j-(l/2)]Ej 

with the constants a0, B, A determined in terms of Ej+1, Es, Ej.] by the procedure represented by 
equations (40)-(44). If the mesh is uniform, A 1s determined by equations (34)-(36) and 

and 

E, - A 

for uniform mesh, (76) 

B = -^i r   » for uniform mesh. (77) 



2-10 

The initial value and default value of Cfj is 1.0. Application of the correction factors is the same as 
in equations (72) and (73). 

In figure 6, results from a numerical solution obtained, according to equations (49) and (75), by 
computing flux- and source-correction factors every tenth timestep are compared with the exact solution. 
It is apparent that this modification greatly improves the accuracy of the solution in comparison with 
results from the basic numerical method (fig. 5), even though the variations with n are not exponential. 
Such gains in accuracy are to be expected when there are large variations of dependent variables between 
mesh points that are not well represented by second-degree polynomials. 

COMPRESSIBLE MEAN-FLOW EQUATIONS 

Basis of Equations 

Time-dependent solutions of the conservation relations for viscous compressible flows that are 
coupled to turbulence model equations are presented in a later section. Turbulence effects in compressible 
flows are incorporated by means of the "time averaged" viscous flow equations cast in terms of "mass 
averaged" variables. The effects of turbulence on the flow are expressed in terms of a scalar eddy- 
viscosity coefficient. A useful derivation of the mean equations of motion and the Reynolds stress equa- 
tions in terms of mass-averaged variables has been given by Rubesin and Rose (ref. 15). A proliferation 
of explicit mean-product fluctuation terms arising from compressibility is avoided by this technique. The 
resulting mean-flow equations are formally the same as their laminar flow counterparts, except for the 
addition of the Reynolds stress tensor and additional mean-dissipation terms. The mass-averaged Reynolds 
stress equations correspond, term by term, to the constant property equation of Rotta (ref. 16) and the 
turbulence kinetic energy equation is consistent with Rotta's and Townsend's (ref. 17) constant property 
equations. Consequently, turbulence models that have evolved from Reynolds stress equations for incom- 
pressible flows can be applied to compressible flows (albeit the constants may change due to 
compressibility). 

The turbulence models employed in this paper express the Reynolds stress tensor in terms of an eddy 
viscosity E. A Reynolds analogy is used for the Reynolds heat flux and a laminar analogy for the mean- 
dissipation tensor. Thus the vectors U, F, G, E in equation (1), which correspond to the mean-flow 
equations, can be expressed in the form 

pu       \       /       PV 

PUU + 0„        1       /       PUV + T 

PVU + Txy I        1 PV2+Oy 

^(e ♦ ax)u ♦ xxy ♦ qj \(e ♦ ay)v ♦ xxyu t qy/ 

The density p is a mean value and the velocities u, v are mass-averaged values. The bulk viscosity in 
the viscous terms is taken to be zero. Thus the stresses are 

= P ♦ ! <^>(!M^ 2(U + 0 £♦! pes , (79) 

-(*♦«)$♦*), (80) T   = T xy  yx 

°y 
and the heat-flux components are 

and 

q = -(^4>£. 

The last term in equations (79) and (81) arises from the definition of static pressure as the mean of the 
three normal stresses (including Reynolds stresses). The quantity es is the turbulent energy per unit 
mass of fluid. The mass-averaged specific internal energy ej is related to the mean total energy per 
unit volume e, as in laminar flow, by 

e^i-Hi-d. (84) 

Equations of state relate the mean pressure p and temperature T to p and e^. The perfect gas 
relations 

P » (y - l)pei (85) 



and 

and the Sutherland viscosity relation 
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Lv 

C.T3/2 

I " cpn (87) 

are valid approximations at the conditions of experiments referred to in this paper. In these relations 
the ratio of specific beats y    is equal to 1.4 and Cv is equal to 4290 ft lb/slug °R (717.53 in MKS 
units). The constant Cx 1s 2.27*10"8 slug °R/ft sec (1.4582*106 MKS) and C2 is 198.6 °R (110.333 MKS). 

Differencing Method for Rectangular Mesh 

As discussed in the section on numerical methods, the fluxes and stresses are evaluated at cell 
faces between the computation points in such a manner as to achieve second-order accuracy after the 
predictor-corrector sequence is concluded. It is sufficient to describe the technique for the Lx 
operator, since the procedure is the same for the Ly operator with (x,y), (u,v), and (i,j) interchanged. 
The Lx operator requires evaluation of the terms of F in equation (78) at cell faces [i + (1/2)] 
between computation points i and 1+1, which are at the centers of the cells. Treatment of quantities 
appearing 1n F that do not entail derivatives is exemplified by the notation 

{p.  , for predictor 

(88) 
Pi+1 , for corrector . 

However, there is one exception to this rule. To avoid a nonlinear instability that arises when u 
changes from negative to positive within a cell, the u that multiplies p, pu, pv, and (e + ox) is modi- 
fled according to the relation 

u1 + (i/2) = \  (ui+i + ui}» if <u1 + i ' ui) > ° and (3ui+i " uiH3ui - ui + 1) < 0 ,       (89) 

in both predictor and corrector (ref. 1). The j subscript has been omitted in equations (88) and (89) 
since the center of the cell face lies at the same value of y as the center of the cell in a rectangular 
mesh. Also, for simplicity, the bar overscript representing predicted quantities is omitted here and in 
subsequent relations. 

Treatment of derivatives appearing 1n F is according to the notation 

(|~)       = ^'J " 1>J , for predictor and corrector , (90) 
Vx/1+(i/2),j   xi+i " x1 

and 

vi(i/2)j =' 

u1 i+i " ui i-i 
-4lLJ „ >J  , for predictor 
yj+i " yj-i 

'l + i,J+i ~ "l+i.J-i > for corrector , 

(91) 

*j+i " yJ-i 

Integral Form For Nonorthogonal Mesh 

When the boundaries of the flow field under investigation are not aligned with a rectangular mesh, 
many computational problems are avoided by the use of a nonorthogonal mesh that does fit the boundaries. 
In the absence of source terms, integration of equation (1) over a volume element converts equation (1) 
Into the following form: 

A j   U d vol + / H • n ds = 0 , (92) 
3t vol S 

(93) 
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q E uex + vey , 

tHoee +T ee + T ee + a e e , xxx  xy x y  yx y x  y y y ■ 

where ex, e» are unit vectors, n 1s a unit vector normal to the surface of the computation cell, and 
ax, TXy, Oy are defined in equations (79)-(81). These equations can be solved in the Cartesian x,y 
coordinate system for an arbitrary quadrilateral volume element (sketch a). 

ns=~S 
fds=fds+fds+fds+fds 
S S|        S2      S3       S4 

k-y 
A 

->   l,X 

Sketch a.    Quadrilateral volume element. 

According to MacCormack (ref.  18), equations (4) and (5) in the    Ly   operator are replaced by 

predictor:    U™ - „J§J - ^ (^  ■ S3 ♦ H^,  . tf 

corrector:    ^JM»J . ^ + u^TU . _^_ [j^TW . ^ + „n^T . 5jj 

(94) 

where superscript n is a timestep index and Sj Su are area vectors for the volume element voli «, 
and the Lx operator becomes 

predictor: U»« - tfM  . _|t_ (£}*) . su  ♦ Stf^ . s,] 

corrector: 

(95) 

The solution can be advanced more frequently with smaller timesteps in regions of fine mesh as mentioned 
in the discussion that follows equation (5). To evaluate the viscous derivatives for a nonorthogonal mesh, 
the following transformation is appropriate: 

Ü-ÜUL + HiQ.  ü - ü l£ + ilia ax " as ax  an ax ' ay  H ay  8n ay ' 

where ^ Is a dummy dependent variable and U.n) are the local coordinates of the nonorthogonal mesh 
(sketch b). The derivatives are differenced according to the relations 

A$ Ay    -  A* Ay 
££, -      5    n n    5        afl _      £    n A<fr  AX     -   A<j>  AX 

n__§. 
AytAxn - AynAxc ' 

where (for surfaces    S3 and Sj 

*♦* = HnjJ ' ♦im.Jj   '    A*n = ♦ll.j+i " ♦ll.jm  ' 

AX5 = K1+1JJ " X1m,jj AXn = Xü,j + i " Xii,jm ' 

AyS = yi+i,jj " yim,jj ' Ayn = yii,j+i " yii,jm ■ 

(96) 

(97) 

(98) 

(99) 

(100) 
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Sketch b. Nonorthogonal mesh notation. 

and 

(i      for Lx (1 

■    ii  = 

i-1 for Ly li+1 for Lx corrector 
(101) 

jm = 
j-1 for Lx 

j  for Ly 
jj 

j+1 for Ly corrector 
(102) 

This treatment of the viscous derivatives always results in centered differences, maintains the second- 
order accuracy obtained by symmetric ordering of the L« and Ly operators, and provides consistent treat- 
ment of discontinuous boundary conditions (such as at the leading and trailing edges of airfoils). The 
algorithm represented by equation (89) is again necessary to avoid a nonlinear Instability associated with 
an expansion 1n which the velocity changes sign. 

TURBULENCE MODELS 

Mixing Length Model 

A simple mixing-length model (ref. 3) was used by Deiwert (refs. 9, 11) to treat turbulence for the 
calculation of separated flow over a thick airfoil. Detailed solutions are discussed in a later section. 
Using this mixing-length model, the eddy viscosity e, in the neighborhood of the wall, is defined as 

e = pi" 
3U +   3V 
3y  3X 

(103) 

where 

, = 0.4y[l-exp(-yV^/26)] (104) 

until the following value of i is reached and subsequently used: 

£ = 0.076 

where 6 is determined by an arbitrary cutoff criterion based on the vortidty. For the wake region, 

e = 0.001176p«Iu* - ur| (105) 

where u^ and ufi are the velocities at the edge of the wake and its centerline, respectively. 

While ultimately it will be necessary to resort to more advanced turbulence models for separated 
flows, the above model should provide some insight into the influence of Reynolds numbers on such flows, 
as well as provide an instrument for the development of the requisite numerical methods. 

Two-Equation Turbulence Model 

Calculations have been carried out by Baldwin and MacCormack (ref. 8) for the shock-separated hyper- 
sonic turbulent boundary layer based on either the simple mixing-length model or on the Saffman-Wilcox 
(ref. 5) model. In the two-equation turbulence model, the eddy viscosity 1s assumed to be a function of 
local properties of the turbulence. The properties selected are the specific turbulent energy es and 
the pseudovorticity (or rate of dissipation) Q, which satisfy equation (1) with 
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where 

ex = -(M ♦ o*«) § , 

3<u 
ey = -(, ♦ o*e) -g . 

"x ' "ft- + «) IF ■ 

/ x   3ß2 

u»y - -(w + at) -3^ , 

% - [■ Mlf'Wlü2 - 4n2 ■ 
The values of the constants a*, 0, a*, a, 6*. ß, Cs are 0.5, 0.5, 0.3, 0.2638, 0.09, 0.18, and 2.5, 
respectively. The eddy viscosity e appearing in the above relations, as well as in the mean-flow 
equations, is given by 

(107) 

fs 
7. 

e--# (108) 

Saffman (ref. 19), Wilcox and Alber (ref. 20), and other authors have demonstrated a wide range of 
applicability of the above model for incompressible and compressible flows. More recently, Saffman and 
Wilcox (ref. 5) have shown that the model provides reasonable predictions of viscous sublayers in turbu- 
lent boundary layers and reproduces the law of the wall, which has been observed experimentally. For this 
application, the appropriate boundary conditions with a wall at y -  0 are 

(e.)  =0 (109) 
y=o 

Co)«-« " -r^— s(zft J-S& ) (110) y"°  a <Vw \°  Mw  / 

where the subscript w refers to conditions in the gas at the wall. The function S is assumed to be a 
universal function of its argument, which includes as a factor the wall roughness height z0. By compari- 
son of calculations with measurements in incompressible flows, Saffman and Wilcox (ref. 5) have found the 
approximate variation of S in the entire range from rough to smooth walls. In particular, S equal to 
100 or greater corresponds to smooth walls, as in the present application. In the far outer inviscid 
flow, following Wilcox (ref. 21), es and n are given constant values that correspond approximately to 
wind-tunnel turbulence and" produce a negligible value of eddy viscosity. 

Equations (50) and (51), used earlier to demonstrate numerical techniques, are derived from equa- 
tions (1), (106), and (107) by retention of the dominant terms ey and wy in 6, retention of -ß*pfipee 
in ee, and deletion of all terms except -ßpflpß2 1n eu. Further, e is neglected compared to u, which 
is approximated by uw, the value at the wall, and p approximated by pw. These are valid approxima- 
tions in the viscous sublayer. Finally, equations (50) and (51) follow from the transformation 
c = (n/nj2, T = (C/20)t, n = /E7?0~y, where C = ßP^fo/V 

The differencing technique for the turbulence model equations according to the basic numerical method 
used 1n this investigation is the same as for the mean-flow equations. 

RESULTS 

Separated Transonic Flow over an Airfoil 

High Reynolds-number transonic flows exhibit several features that are important to aerodynamic 
design. Flow past an airfoil in a high Mach-number subsonic freestream contains a supersonic region some- 
where between leading and trailing edges. The supersonic flow becomes subsonic by passing through a 
standing shock. If the shock strength is large enough, boundary-layer separation will occur. Depending 
on the airfoil configuration, there may be separation at the trailing edge, as well as the shocR-induced 
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separation, and the two regions may coalesce. To further complicate the analysis of such flows, the 
boundary layer is generally turbulent, and its response to adverse pressure gradients may depend on the 
Reynolds number. 

To develop techniques for the investigation of such flow fields and assess the influence of the 
Reynolds number, the flow over a two-dimensional 18-percent-thick biconvex airfoil at zero angle-of-attack 
1s simulated for chord Reynolds numbers of 1, 2, 4, and 6.67*106 and a freestream Mach number of 0.775. 
The numerical method used is described in the section on the integral form for nonorthogonal mesh. The 
turbulence is represented by the mixing-length model defined in equations (103)-(105). 

The airfoil, initially at rest, is impulsively started at time zero at the final freestream Mach 
number and pressure. Figure 7 shows the control volume within which the flow field development is fol- 
lowed in time. At a sufficient distance upstream of the leading edge (in this case, 6 chord lengths), the 
flow is assumed uniform at the freestream conditions (u = U«, v = 0) as it 1s along the far transverse 
boundary (again, 6 chord lengths away). The downstream boundary is positioned far enough downstream of 
the trailing edge (9 chord lengths) that all gradients in the flow direction can be assumed negligible. 
The surface of the airfoil is impermeable and no-sl1p boundary conditions are Imposed (u = v = 0). The 
airfoil 1s assumed adiabatic (fT*?! ■ 0) and the normal surface pressure gradient taken to be zero 
(ap/an = 0). Ahead of and behind the airfoil the flow is symmetric. To simulate boundary-layer separation 
reliably, 1t 1s necessary to resolve the boundary layer all the way into the viscous sublayer. As a rule 
of thumb, a first mesh spacing of Aymfn 

s  (2/3)c/*/Re^" 1s adequate. 

The mesh shown in figure 8 contains 50 by 38 computation points. In the x direction, the mesh is 
uniform over the airfoil (20 stations) and is exponentially stretched ahead (10 stations) and behind 
(20 stations). In the y direction, a coarse mesh of 26 points is exponentially stretched away from the 
airfoil. The innermost region is further subdivided into a medium mesh of 10 exponentially stretched 
points, and the Innermost of these 1s divided into a fine mesh of 4 uniformly spaced points. The operator 
sequence (LyLxLy)

n (see discussion following eq. (5)) is used with different tlmesteps in the fine, medium, 
and coarse meshes according to the relation 

At = r—*—-I ■ 11vI + a + -T- (u + e)/p 
L Jmin 

where h 1s the mesh spacing, v is the appropriate velocity, a the local speed of sound, and ai a 
function of the mesh aspect ratio. All solutions were carried out for a time corresponding to the motion 
of a fluid particle through 7.5 chord lengths in the mean flow. Convergence to a steady state was deter- 
mined by monitoring the stress tensor on the body surface and in the near wake. 

Figure 9 shows the variations of pressure coefficient over the airfoil surface (Cn = 2(p - POJ/OJJ»2). 
The invlscid pressure coefficient is included for comparison. All of the viscous solutions lie to the left 
of the invlscid solution because of boundary-layer displacement effects. Of the features affected by 
viscosity, the shock location is most affected as a result of flow separation that is present in the vis- 
cous solutions. At the trailing edge, the viscous flow pressure distributions show a plateau in the region 
of a long separation bubble extending into the wake. As the Reynolds number is decreased, the shock 
strength is diminished and the shock location moves upstream. This results from the thickening of the 
boundary layer and decrease in momentum, which increases the susceptibility to separation. A decrease in 
Reynolds number is also accompanied by a decrease in pressure recovery behind the shock, Indicating larger 
displacement effects in the separated region. For the particular geometry under consideration, the influ- 
ence of the Reynolds number on surface pressure distribution is not great, but is in the directions to be 
expected. For the range of Reynolds numbers considered, the shock is centered (cp = cp*) between the 
73- and 75-percent chord. 

Figure 10 shows the skin-friction variation over the airfoil surface (cf ■ Zx^/pja^2),    Ahead of the 
shock, as the Reynolds number is decreased, the skin-friction coefficient Is increased. Separation occurs 
farther upstream at the lower Reynolds numbers, and, for the four Reynolds numbers considered, begins 
between the 69- and 72-percent chord, some 3-percent chord ahead of the shock location Indicated from the 
pressure plots. Aft of the shock-induced separation region, the flow tends to reattach, but merges with 
the trailing edge separation. The sk1n-fr1ction coefficient distribution for the lowest Reynolds number 
exhibits the widest variation in the combined separation region and, in fact, almost reattaches. This 
tendency becomes less pronounced with increasing Reynolds number. 

Figures 11(a) and 11(b) show variations of displacement and momentum thicknesses, respectively. Both 
thickness parameters increase with decreasing Reynolds number and vary by more than three orders of magni- 
tude over the length of the airfoil. Immediately ahead of the shock-induced separation region, both 
thickness parameters begin increasing dramatically over the separation bubble. This thickening is due to 
the reverse flow near the airfoil surface. 

Typical boundary-layer profiles ahead of the shock are compared in figure 12 with the "law of the 
wall." The symbols represent the numerical solution and are at values of y+ that correspond to the 
centers of the computation cells. The profiles each have one point in the viscous sublayer where u+ 

varies linearly with y+ so that accurate values of skin friction can be computed. It can be seen that 
resolution through the wall and wake-flow regions of the boundary layer is adequate for attainment of 
realistic solutions. 

Velocity profiles in the separation region are shown 1n figure 13. These variations over the aft 
portion of the airfoil and 1n the wake are plotted 1n terms of physical coordinates. The first separated 
profile 1s at 0.725 chord, indicating separation somewhat ahead of that station. The shock location is 
immediately downstream at about 0.740 chord. The reattachment point is nearly 0.2-chord downstream of 
the trailing edge. Figure 13 also shows the dividing streamline within which the net mass flow is zero. 
Details of the solutions in the separated region are similar for the other cases at higher Reynolds number. 
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Figure 14 is a Mach-number contour plot near the surface of the airfoil. Contours are shown for 
0 < M < 1.4 in increments of 0.02. Thickening of the boundary layer as it progresses down the airfoil is 
clearly indicated. At a station near 70-percent chord, the shock impinges on the boundary layer and the 
flow separates, resulting in large displacement effects. Large transverse gradients in the boundary 
layer gradually die out in the wake. Inside the separation bubble, the gradients are much smaller than in 
the boundary layer or near wake, indicating a lower speed and nearly constant density flow. 

Figure 15(a) shows isobars and 15(b) Mach-number contours from the calculation at the highest Reynolds 
number Rec = 6.67*10

6. These plots clearly Indicate the position of the standing shock, and, in 
figure 15(b), the boundary layer, wake, and separation bubble off the trailing edge are apparent. The 
isobars are at 0.46 < p/p«,, < 1.32 in Increments of 0.02. The Mach-number contours 1n figure 15(b) cover a 
different range than those in figure 14, namely, 0.40 < M < 1.40 in increments of 0.02. Because both the 
forward and rearward stagnation regions of the separation bubble are surrounded by contours of decreasing 
pressure, they are clearly discernible in the isobar plots. 

Shock Induced Separation of a Hypersonic Turbulent Boundary Layer 

The flow field investigated is depicted 1n figure 16. Air flowing from left to right forms a turbu- 
lent boundary layer on a flat plate. The shock-wave incident on the boundary layer produces a separation 
bubble within which there is reversed flow. Deflection of descending streamlines by the plate aft of 
reattachment gives rise to a reflected shock wave. Calculations of primary Interest are confined to the 
neighborhood of the interaction region within the boundaries of the rectangle BCGF. Flow quantities are 
held fixed along BC and CG. Zero slip and a constant wall temperature Tw are imposed as boundary condi- 
tions along the flat plate. Since the flow equations are either nearly hyperbolic or parabolic along F6, 
there 1s little upstream influence, and the flow quantities at the last column of mesh points are equated 
to the values computed at the next-to-last column of points in each timestep. A calculation starts from a 
uniform flow, except for the imposed values along BC and CG. The turbulent boundary layer and shock wave 
grow with time and, eventually, a steady-state solution 1s achieved. Calculations have been made based on 
either the mixing-length model of reference (22) or the two-equation turbulence model described by equa- 
tions (106)-(110). 

It was not known at the outset whether the bow wave from formation of the boundary layer would cause 
significant effects. Consequently, calculations have also been made using the same machine code within the 
boundaries ABDE. The boundary layer profiles along BD and skin friction and heat transfer computed at B 
agreed within 10 percent with calculations obtained from a machine code developed by Marvin and Sheaffer 
(ref. 23) based on the boundary-layer approximation. 

The experiment used for comparison was conducted by Holden (ref.  24). Measurements were made of 
pressure, skin friction, and heat transfer along the flat plate in the interaction region. The case 
selected for comparison is at Mach number 8.47 and Reynolds number 22.5*106 based on freestream conditions 
and distance from leading edge to shock impingement. The pressure rises by a factor of 83 across incident 
and reflected shocks. In the calculations, the shock strength is adjusted to match this ratio. The posi- 
tion of the shock is adjusted to match the measured pressure distribution as closely as possible. 
Figure 17 contains a Schlieren photograph of the experimental flow field in the interaction region. 

The computational mesh employed 1s shown in figure 18. Spacing in the x direction is uniform with 
Ax = 0.0102 ft. Mesh spacing in the y direction is also uniform within each of four regions. In the 
outer Inviscid region, which contains 10 rows of points, Ay = 0.0096 ft. The finest mesh near the wall 
contains 5 rows of points with Ay = 5*10~5 ft. Two Intermediate regions containing 6 and 10 rows of 
points are spaced at intervals of Ay = 4X10"1* and 3.2*10~3 ft, respectively. 

Figure 19 contains a plot of a velocity profile in terms of universal coordinates showing the degree 
of resolution achieved. The symbols are at the computational mesh points. The viscous sublayer is well 
resolved at this station in the Initial turbulent boundary layer ahead of the interaction. The departure 
from the law of the wall in outer regions is due to density variations 1n this highly cooled boundary 
layer. An incompressible version of universal coordinates u+, y  was used for simplicity, since a check 
on resolution of the viscous sublayer was of primary interest. 

In regions near the wall, the turbulence model equations pose a more severe resolution problem than 
the mean-flow equations. This results from steep gradients, which are themselves relatively slowly vary- 
ing. The aforementioned method that produces exponential accuracy, equations (33)-(38), was used in the 
Ly operator in the finest mesh. This procedure is particularly suited to boundary layers, which are 
quasi-one-dimensional. Figure 20 contains plots showing the computed variations of turbulence quantities 
according to the Saffman-Wilcox model. These profiles are at a station 1n the initial boundary layer 
ahead of the interaction. The quantities are nondlmenslonalized in a way that produces the same variations 
In the viscous sublayer at all upstream stations except near the leading edge. The peak value of c/ww 
may appear to be low because values of u    near the peak are a factor of 4 below uw. The 3.7 power varia- 
tion of es

+ and -2 power variation of ß+ near the wall are in agreement with the exact solution of the 
simplified model given in equations (61) and (62). The basic numerical method produced entirely different 
variations. The modification that produces exponential accuracy is essential in this application. The 
number of mesh points required for comparable results from the basic method would entail prohibitive com- 
putation times. 

In the region aft of reattachment, the viscous sublayer becomes an order of magnitude thinner than in 
the boundary layer ahead of the interaction. Straightforward application of the basic numerical method 
would again require prohibitive computation times in a mesh fine enough to resolve the viscous sublayer. 
Therefore, we have developed a procedure that utilizes iterative solutions of the steady-state boundary 
layer approximation near the wall. Periodically, the boundary layer equations are solved iteratively to 
find the values of xw, q^, (3es/ay)w, and (3fl2/3y)w that provide an inner solution matching the values 
°^ uij» (el)ij» (es)ij» and aij at tne th">rcl row °f "rash points from the wall. The inner solution then 
provides values of all variables at the second row of mesh points to be used in succeeding timesteps of the 
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finite-difference solution. The inner solution is repeated often enough to retain time accuracy of the 
calculation. 

Figure 21 contains a velocity profile obtained by the foregoing technique. At this station, in the 
compressed region aft of reattachment, the finest mesh of the finite difference solution (square symbols) 
does not resolve the viscous sublayer. The inner solution described above is represented by circles. It 
can be seen that the inner solution, extended beyond the region in which it is used (out to J = 3) con- 
tinues to match the finite difference solution farther out. Calculations were made with and without the 
use of the inner solution in the separated region where the viscous sublayer is adequately resolved in the 
finite-difference mesh. The results were insensitive to the use of the boundary-layer approximation within 
the viscous sublayer, although it is known that the boundary-layer approximation may fail if it is used 
through the entire viscous region near a separation point with appreciable pressure gradients normal to the 
wall. Figure 22 contains reversed flow velocity profiles in the separated region. It is apparent that the 
viscous sublayer must be resolved near the separation point. Departures from the law of the wall are 
large 1n this region. 

Preliminary calculations were in gross disagreement with the experimental measurements of Holden 
(ref. 24) 1n the separated region. The computed pressure rise was much steeper than indicated by the 
measurements. Errors from the numerical method would be expected to produce a discrepancy in the opposite 
direction. It was found that this discrepancy 1n pressure distributions could be removed by introducing 
a momentum defect in the freestream outside the turbulent boundary layer ahead of the interaction in a 
manner to be discussed shortly. The calculations indicate that the entropy layer due to the bow wave pro- 
duced by formation of the boundary layer ahead of the interaction is not of sufficient strength to produce 
the momentum defect needed. It is possible that intermittent shock waves caused by turbulent eddies do 
produce an entropy layer of the strength needed. Since we are not equipped to compute such effects, the 
flow quantities were readjusted at the upstream boundary by the amounts needed for agreement with the 
experimental pressure distribution. The readjustments were made at constant pressure and constant total 
temperature as though the momentum defect were produced by shock waves in the flow ahead. 

Figure 23 shows the computed and assumed mass-flux profiles ahead of the interaction. The computed 
profiles are from the machine code of Marvin and Sheaffer (ref. 23), which 1s based on the boundary-layer 
approximation. They are also nearly the same as results from the machine code of this investigation 
applied in the region from the leading edge to the upstream boundary for computation 1n the interaction 
region (station BC 1n fig. 16). In figure 24, comparisons are shown between the measured and computed 
pressure distributions with and without the assumed momentum defect. The hypersonic pressure coefficient 
Cp * 2p/pa>u<a

2 is used here. Figure 25 shows computed streamlines. Although the assumed momentum defect 
has only a small effect on the computed skin friction and heat transfer ahead of the interaction, it has a 
profound effect on the flow in the interaction region. The modification of initial profiles doubles the 
size of the separation bubble both along the flat plate and normal to it. The remainder of results in this 
paper are based on the assumed initial profiles that produce agreement with the measured pressure 
distribution. 

Figure 26 contains a plot of skin-friction coefficient showing the real time for a solution to reach 
a steady state. This is a calculation based on the Saffman-Wilcox model. The solution is started from a 
converged solution of the mixing-length model. The field of computation extends over a distance of about 
0.4 ft (0.12192 m) and includes the interaction region. The plot shows the variation of skin-friction 
coefficient at the downstream end of the computation field versus time. This result is indicative of the 
minimum time that a wind tunnel should be operated to reach a state corresponding to arbitrarily longer 
times. Since the entire flow field of interest, starting at the leading edge of the flat plate is roughly 
six times as long as the computation field, presumably wind-tunnel operating times should be six times as 
long as that Indicated in the figure. The time required to reach steady state according to the mixing- 
length model was about the same as in this figure. 

In figure 27, comparisons are shown between computed and measured skin friction and heat transfer in 
the interaction region. The skin friction coefficient 1s defined as Cf = 2TW/P0PU(I>

2
 and the heat transfer 

coefficient as C^ = qw/y(CvTct - e-fw)oMu.. The magnitudes of variations 1n the forward- and reversed-flow 
regions predicted by both turbulence models are consistent with the measurements. However, the extent of 
the reversed flow from both calculations exceeds that indicated by the measurements. The levels of skin 
friction and heat transfer predicted by the mixing-length model aft of reattachment are well below the 
measured values. The Saffman-Wilcox model prediction of skin friction is in better agreement with the 
measurements, but still low. Additional calculations were made to estimate the degree of wall roughness 
that would be required to elevate the computed skin friction to the level indicated by the experiment. It 
was found that wall roughness heights less than 10"5 ft (3.048*10~6 m) would not be effective.  Information 
from Holden (ref. 24) indicates that the flat plate itself was an order of magnitude smoother than this. 
However, the skin-friction-element mountings did present discontinuities of that order to the flow. It may 
be difficult to make measurements that do not disturb the flow in viscous sublayers as thin as that which 
develops at the conditions of this experiment. 

Differences 1n the predictions from the simpler (mixing length) and more advanced turbulence models 
will be discussed presently. The reason for overestimate of the heat transfer aft of reattachment by 
the Saffman-Wilcox model is not known. The rapid rise of C^ in the neighborhood of reattachment can be 
attributed to two factors. A high level of turbulent energy is generated over the separation bubble. This 
turbulence is convected by descending streamlines to a region near the reattachment point. At the same 
time, the pseudovorticity at the wall goes to zero when TW is zero and a finite value of S = 100 is 
Imposed in the boundary condition (eq. (110)). Consequently, the eddy viscosity assumes relatively large 
values near the reattachment point, compared to values somewhat removed at the same distance from the 
wall. This 1s illustrated in figure 28, which contains plots of the ratio of eddy viscosity to molecular 
velocity at the wall. This anomaly will probably be removed by later versions of the boundary condition 
on pseudovorticity. 

Profiles of the model variables at a station near the downstream end of the computation field are 
shown 1n figure 29. The levels of eddy viscosity aft of reattachment according to the Saffman-Wilcox 
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model are everywhere larger than those from the mixing-length model. This difference can be attributed to 
lags in adjustments along streamlines, not accounted for by the mixing-length model. According to the 
Saffman-Wilcox model, turbulence generated over the separation bubble persists downstream and diffuses 
toward the wall. This effect can be illustrated by defining an equilibrium turbulent energy (es)eq as 
that which would be present if the production and dissipation of turbulent energy were equal with negli- 
gible contributions from convection and diffusion. Setting ee equal to zero in equation (107), neglect- 
ing all velocity derivatives except |au/3y|, and multiplying terms Inside the bracket by e = es/n leads 
to the relation 

(es»eq $ Oil) 

This is equivalent to Townsend's (ref. 25) definition of equilibrium turbulent energy (with the same numeri- 
cal constant). In attached boundary layers with zero pressure gradient, es assumes values close to 
(ec)eq» except near the wall. Figure 30 contains plots of the ratio es/(ec)eg from the foregoing numeri- 
cal solution. The behavior at a station ahead of the interaction is typical of attached boundary layers. 
The large increase near the wall results from inward diffusion of turbulence, which is destroyed by 
enhanced degradation and viscous dissipation. However, the peaks in the ratio at downstream stations arise 
from rapid changes in flow quantities along streamlines. The Saffman-WUcox model calculation indicates 
that appreciable departure from equilibrium persists aft of reattachment through the remainder of the com- 
putation field. 

Calculations of the type described can aid in the design of experiments for the purpose of testing 
the turbulence models that are evolving. Sensitivity of the flow to experimental practices as well as to 
computational approximations can be found. Prediction of the required wind-tunnel residence time to 
establish the flow was insensitive to approximations in the calculations. An unexpected sensitivity of 
the separated flow field to conditions in the oncoming stream ahead of the Interaction was predicted by 
both turbulence models. The height of permissible roughness on instrumentation that would not disturb the 
flow in an unknown manner was not greatly different according to the two models for which calculations 
were made. The calculations were insensitive to use of the boundary-layer approximation within the viscous 
sublayer, although this approximation may fail if applied farther out in the presence of appreciable 
pressure gradients normal to the wall. Hopefully, future interaction between experiment and calculation 
will produce measurements of the needed profiles outside the boundary layer ahead of the interaction. 
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Fig. 1 Solution of Burger's equation (basic 
method, CFL = 0.1). 
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Fig.  3    Linear viscous equation  (basic method). 
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OOMPUTATIONAL TECHNIQUES FOR BOUNDARY LAYERS 
by 

F. G. Blottner 
Sandia Laboratories 

Albuquerque,  New Mexico 87115 
United States 

SUMMARY 

The present status of the numerical computation of boundary layers is given for two- and three- 
dimensional flows.    The appropriate transformations to apply to the governing equations are considered, 
and the possible solution procedures are discussed.    The emphasis of this paper is on the finite- 
difference procedures which are illustrated for the two-dimensional, incompressible flows.    For compres- 
sible flows the Crank-Nicolson technique is given.    The changes which are needed to this approach, when 
the flow is turbulent, are presented.    The finite-difference procedures utilized for unsteady flows are 
given.    Solution techniques for three-dimensional flows are described and the features which are different 
from two-dimensional flows are emphasized. 

1.    INTRODUCTION 

There have been several survey papers concerned with the solution of the boundary-layer equations. 
Paskonov and Chudov1 have reviewed papers concerned with finite-difference methods of solution of the 
boundary-layer equations.    A similar type of review has been given by Blottner,    and al30 presented is a 
technique for solving the boundary-layer equations for a raulticomponent gas mixture.    A general survey on 
boundary-layer research has been made by SmithJ where a brief review is given of solution techniques. 
Also,  several books are available on some of the methods.    An implicit finite-difference procedure is 
given in the book by Patankar and Spalding4 and is applied to two-dimensional laminar and turbulent flows. 
A complete description of the differential-difference method of Smith and colleagues has been published 
by Jaffe and Smith.b    A limited account of solution techniques for three-dimensional, turbulent boundary 
layers is presented by Nash and Patel.6    Also, a forthcoming book by Cebeci and Smith7 is concerned with 
the solution of the turbulent boundary-layer equations with the Keller box scheme. 

The purpose of this paper is to give a description of the methodology of the numerical solution 
techniques for boundary layers and to present one method of solution in detail where it is applied to the 
various boundary-layer problems.    This paper is not intended to include all the solution techniques that 
have been applied to the boundary-layer equations.    The emphasis will be on finite-difference procedures 
with the method of weighted residuals and the matrix-integral method being only briefly mentioned.    This 
neglect mainly results from the author's lack of first-hand experience with these procedures and not that 
one approach is better than the other.    An adequate evaluation has not been made of these methods, although 
an initial attempt was made as reported by Lewis."    Also, there is a need to be aware of the various 
techniques which have been proposed, as some of these methods were perhaps before their time.    For example, 
one approach results in a system of stiff ordinary differential equations and when this method was origi- 
nally investigated, a good computer program for the solution of these equations was not available.    The 
second objective of the paper is to present a good method for solving boundary-layer flows.    The method 
chosen is the Crank-Nicolson finite-difference scheme with which the author has had first-hand experience. 
This is one reason it is chosen, but, in addition, this type of numerical procedure has proven to be a 
good technique for solving the boundary-layer equations by many people.    Also, most of the other methods 
have received rather complete coverage by other authors while the Crank-Nicolson method has not been 
discussed in detail for various boundary-layer flows in a unified manner.    There have been some recent 
developments in this method which are just becoming available in the literature.    Therefore, the present 
formulation of the Crank-Nicolson scheme is relatively new and results in a second-order accurate scheme 
in both coordinates. 

There are a number of subjects and items that are related to the numerical solution of the boundary- 
layer equations that have not been included.     Such things as higher order boundary-layer theory, real 
gas flows, various boundary conditions, and other boundary-layer-like flows have been neglected.    The 
use of higher order boundary-lay er theory has not been included as it has not proven to be a useful 
approach, as yet.    The introduction of real gas effects into the governing equation introduces at least 
one significant problem if finite-chemical reactions are considered.    The production terms make the 
governing species equations "stiff" and the numerical procedure must take this into account.    One approach 
has been given by Blottner"5  for a first-order scheme in the flow direction where the equations are 
handled in an uncoupled manner.    For higher order schemes, coupling of the governing equations is 
probably required, but this has not been established.    The use of wall boundary conditions or inviscid 
edge flow conditions has generally very little influence on the numerical solution technique.    There is 
perhaps one exception,  the case of massive blowing at the surface.    Libby9 has indicated that some of 
the numerical methods fail for this case, and he has used an asymptotic analysis.    As the title of this 
paper indicates, only boundary-layer flows are considered.    However, the techniques presented in this 
paper can be applied to other fluid flows.    For example,  Hornbeck10 has presented finite-difference 
solution techniques for boundary layers,  jets, free convection, channel flow, and tube flow.    There 
have been many people who have used the established numerical solution techniques for various boundary- 
layer flows.    These papers have not been referred to in most cases, although there might have been some 
improvement in the numerical schemes.    If the author has overlooked something of importance,  it is not 
intentional, but is due to limitation of time and the large number of papers that have appeared. 

T  
This work was supported by the U. S. Atomic Energy Commission. 
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The paper is divided into a number of sections with the governing equations for a laminar, three- 
dimensional, unsteady boundary-lay er flow given in Section 2.    The numerical solution of various forms of 
these equations will be considered.    For turbulent flows, the governing equations depend on the closure 
model.    Therefore, the special equations used to illustrate the solution of turbulent flow will be dis- 
cussed in that section.    Since a large class of boundary-layer problems is included with the two-dimensional 
and axisymmetric steady equations and transformations of these equations have been developed,  Section 3 
presents  these governing equations.    Then a review is given of the  transformations  that have been used 
with numerical solutions.    The governing equations in terms of Levy-Lees variables are presented, and this 
form of the equations are used for the  subsequent numerical solutions.    In Section h the solution techniques 
for solving the similar boundary-layer equations are given.    It is necessary to solve these equations in 
order to obtain initial profiles of the dependent variables which gives the initial conditions for the 
solution along the surface.     The solution techniques for these two-point boundary-value, ordinary differ- 
ential equations are extremely important as they can be utilized in the two- and three-dimensional problems. 
A review of solution procedures that have been used is given.    Then a finite-difference procedure which 
uses Newton-Raphson linearization is presented.    The method keeps the finite-difference equations for the 
continuity and momentum equations coupled, which is shown later to be significant for solutions along the 
surface.    Also,  the Keller midpoint scheme is illustrated in this section. 

A review of many of the difference methods for solving the non-similar,  two-dimensional and axi- 
symmetric boundary-layer equations is given in Section $.    These are illustrated with the Levy-Lees form 
of the incompressible, boundary-layer equations.    The procedure considered best for solving the incompres- 
sible equations is described in detail in Section 6.    The convergence of the iteration procedures used to 
solve the nonlinear,   finite-difference equations required for a second-order scheme is discussed.    Also, 
a procedure of judging the accuracy and order of a scheme is presented.    The incompressible,  finite- 
difference scheme is extended to the compressible boundary-layer equations in Section 7.    The difficulties 
of even knowing the governing equations for a turbulent boundary are indicated in Section 8.    For turbulent 
flow, the major numerical problem results from the large gradients which occur near the surface and the 
resulting need for a large number of grid points across the layer.    A variable grid scheme is presented 
which is used with the Crank-Nicolson scheme and gives a second-order accurate solution. 

In Section 9 the extension of numerical techniques for steady boundary layers to the unsteady case 
is reviewed.    The Crank-Nicolson scheme can be readily used for this problem if there is no reverse flow. 
The formulation of the boundary conditions and initial conditions appears to be the major difficulty. 

The solution techniques for solving three-dimensional boundary layers are described in Section 10. 
The features which make the three-dimensional problem different from the two-dimensional flow are described. 
The selection of the coordinate system is considered, and a description of the finite-difference schemes 
are given. 

The final section, 11,  is a summary of the status of computational techniques for solving boundary 
layers. 

2.    BOtWIARY-LAYER EQUATIONS 

The general form of the governing laminar equations is now considered, and the notation is chosen to 
give the time-honored form of the two-dimensional,  boundary-layer equations as suggested by Van Eyke.lX 

Since unsteady flows and three-dimensional flows will be investigated, the form needed was originally 
derived by Hayes1    and can also be found in the books by StewartsonlJ and Moore.14    An orthogonal system 
of curvilinear coordinates  (x1, y, x^) is employed on the surface over which the boundary layer is flowing. 
The coordinate normal to the surface is y with y a 0 being the surface.    The lines x,  ■ constant and x^ ■ 
constant give a system of orthogonal coordinates on the surface.    The square of the element of arc di on 
the surface is 

2 - h2dx*_ ♦ h2dx2 (2-1) 

where h,  and h   are metric coefficients and a function of x,  and x_.    Since the boundary layer is assumed 
thin,   tne metric coefficient  in  the    y direction is assumed to be one which gives for the  square of the 
element of arc in the boundary layer the following relation 

ds2 - h2dx2 + dy2 + h2dx2 (2-2) 

It is assumed that the local boundary-layer thickness is small compared with the principal radii of 
curvature of the surface.    The resulting equations are referred to as the thin or first-order boundary- 
layer equations. 

The substantial derivative for the above coordinate system is 

t*-^+h75x7 + Vöy- + h^ (2'3) 

where t is time, and u,  v, w are the velocity components in the directions of the x,, y, x   axes, 
respectively.    The boundary-layer equations for an unsteady compressible perfect gas flow with constant 
specific heats,  c , and constant Prandtl number,  Pr, are 
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Continuity 

x,   - Momentum 

y - Momentum 

x- - Momentum 

* * *fc \k (h3 "° * * Vi °T) * ^ <hl H ■ ° (**) 

l^r'S-^^41^) («) 

(2-6) 

S--V-»--TtviUfc) (2-7) 
"3     :$ 

tegrgj 

%f-i^(^f)-(f)2-fe)2 w) 

i   *i 
% " KÄTTT   f0r x3 * con8tant (2-9a) 

The geodesic curvatures of the surface coordinate lines have been introduced and are given by 

*i 

S " h^j ^ ror *i"00nstant <2-9b) 

the other notation in the above equations, (2-Ii) to (2-8), is the density 0, the viscosity u-, the 
temperature T, and the pressure p, which is constant across the boundary layer as Eq. (2-6) shows. 

The governing equations are completed with the equation of state 

p - ORT (2-10) 

and a viscosity law 

M- ■  M-(T) (2-11) 

The foregoing boundary-layer equations are solved with the boundary and initial conditions which 
will now be described.    If the usual no-slip condition is used, then the velocity components at the 
surface (y - 0) are 

u - v - w - 0 (2-12a) 

With nass transfer at  the  surface,   the velocity component v is  specified.    Also,   the velocity component 
w can be non-zero with a specified value for a body of resolution with spin.    The final surface boundary 
condition is the wall temperature or heat transfer is prescribed which gives 

T - yt, ^, x3)    or   |£ » qw(t,  x^ x^ (2-12b) 

At the outer edge of the boundary layer (y - ») the classical approach is followed where the velocity 
components and the temperature are set equal to the inviscid flow quantities at the surface. These 
boundary conditions are expressed as 

u - ue(t, x1, x3) (2-13a) 

w  = we(t, x^ x3) (2-13b) 

T = Te(t, x1, x3) (2-13c) 



3-4 

The governing equations for the inviscid flow at the surface where v    « 0 are 

£♦ £5 ♦li^-'&'v.'b--?$;% <2^b> 
(dT        u    dT       w    dT  \      -v        u    ;. w    -. 

P c e p 

where the subscript e indicates the quantities are the conditions at the edge of the boundary layer. 
The pressure gradients required in the boundary-layer equations,  (2-$),  (2-7), and (2-8), are deter- 
mined from Eqs.   (2-11+) with the boundary conditions  (2-13) employed.    Another approach is to specify 
the pressure as a function of t, x., and x~ and then with the appropriate boundary and initial 
conditions to solve the partial differential equations,  (2-11;), for the velocity components u   and 
w   and the temperature T . e v e 

If sufficient initial conditions are provided in a plane perpendicular to the surface, the 
boundary-layer equations can be solved in a region downstream if the zones of influence and depen- 
dence are properly taken into account.    These zones have been discussed by Der and Raetz16 and 
Wang.16    The sufficient conditions to start the solution of the boundary-layer equations has been 
considered by Ting.17    These topics will be discussed further when the various problems are 
considered. 

3.    TRANSFORMATION OF THE TWO-DIMENSIONAL AND AXISYMMETRIC STEADY EQUATIONS 

The governing equations for these two cases are written with the use of the parameter    j    which is 
0 for two-dimensional flow and 1 for axisymmetric flow.    The surface curvilinear coordinates and the 
metric coefficients become 

x   and   hx - 1 (3-la) 

z    two-dimensional 
- rj(x) (3-lb) x. - and h    - *. 

3      ( cp   axisymmetric J 

where x is the distance along the body surface measured from the tip or the stagnation point;  z is the 
distance in the direction normal to the two-dimensional plane, and r.   is the radius of the body of 
revolution.    The boundary-layer equations,  (2-U) to (2-8), for this case have d/dx^ ■ 0 and w * 0 which 
gives J 

Continuity 

lx (rb °U) + ly" (rb Pv) " ° (>2) 

x - Momentum 

du du do    d 
♦*("$) (3"3) 

'■:■■ rL:y 

■vS*v$-»fc-M£ £)♦"(*)' i>h) 

where the pressure is constant across the boundary layer.    These equations are completed with  the 
equation of state,   (2-10), and the viscosity law,   (2-11). 

In the development of boundary-layer theory there has been a number of transformations applied to 
the governing equations.    For  the numerical solution of the boundary-layer equations a finite-difference 
procedure could be applied directly to the physical coordinate,  Eqs.   (3-2)-(3-U).    However,  there are 
several difficulties when this form of the equations is used, such as:    (1) the boundary-layer thick- 
ness usually increases downstream,   (2) for bodies with a sharp tip or leading edge there is a singularity 
at this location, and (3) for hypersonic flows,  the tangential velocity has a large gradient near the 
outer edge.    The solution of the equations in physical coordinates has been used in the work of Flügge- 
Lotz and Yu,la, Brailovskaya and Chudov,1"  Paskonov,20 and Blottner and Flügge-Lotz.ai 
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The  von Mises form of the equations has been used by Mitchell and Thomson,"" Mitchell/3 and 
Patankar and Spalding/4    For these equations the independent variable is x and the stream function is ♦, 
which satisfies the continuity equation.    The governing equations become the transformed momentum and 
energy equations. However, the momentum equation has a singularity at the wall which makes the von Mises 
form of the equations difficult to solve numerically. This singularity has been overcome by Mitchell 
and Thomson with an expansion for the velocity in the vicinity of the wall. 

In much of the early work in solving the boundary-layer equations, for example,  Flügge-Lotz, 
Flügge-Lotz and Baxter,2    Baxter and Flügge-Lotz,*7 and Kramer and Lieberstein,3    the Crocco form of 
the equations is employed.    In this transformation the independent variables x and y are replaced 
by x and u and the dependent variable is the viscous shearing stress T,    The continuity and momentum 
equations are combined with this transformation.    With this form of the governing equations, the range 
of the independent variable u is finite and the outer edge is well defined.    However,  there are several 
disadvantages with this transformation as there is a singularity at the outer edge of the boundary layer. 
For the case with velocity overshoot,  it is difficult to apply the Crocco form as quantities are double 
valued as a function of u. 

Other transformations such as the Dorodnitsyn-Howarth have been used by Wu*9 and Blottner and 
Flügge-Lotz.^    This transformation removes the density from the formal equations by introducing a new 
normal coordinate which is a function of the density.    Sills30 has transformed the semi-infinite boundary 
layer normal coordinate into a finite interval before obtaining a finite-difference solution. 

One of the problems with all of the previous methods is the starting of the solution of the equations. 
For sharp bodies, one would want to start the solution at the tip, whereas for a blunt body the solution 
should start at the stagnation point.    At the tip of a sharp body, the boundary-layer thickness is zero 
and the solution in physical coordinates is inappropriate.    If the boundary-layer equations are trans- 
formed into similarity variables,  then in the transformed plane the boundary layer is nearly of uniform 
thickness for many flow situations.    Also,  the partial differential equations reduce to ordinary 
differential equations at  the tip of a body or at a stagnation point.    The  foregoing transformations can 
be placed in similarity form, but the transformation that has been generally employed is the Levy-Lees.31 

This form of the equations was used by Blottner"3    for a binary gas mixture and will now be applied to 
the governing equations,   (3-2) to  (3-u)-    The new independent variables are 

e b J$ I'ody Tl(x, y) - urj      JS  f    o dy (3-5a) 

'{X<^r Vb' 500 « ■*" / 

where jK is a constant and the derivatives become 

h'^e'lMh (3-6b) 

The new dependent variables are 

F = u/ue (3-7a) 

6 - h/h » T/T (3-7b) 
6       6 

V = 2§(F ÖTI/Sx ♦ ov rfyy/2i7jr)/lX(pi>)T UQ r
2J] (3-7c) 

The governing equations become 

Continuity 

2§ aP/a?  + ÖV/Ö71 + F - 0 (3-8a) 

x - Momentum 

Ba< :-,-.- 

2SF oF/o?  ♦ V oF/oll + 0(F2 -  9) -  o(£ dF/dTl)/dT) - 0 (3-8b) 

2§F ö9/o? + V d9/dT| - aX(dF/oT])2 -  (1/Pr) d(i W&\)/W - 0 (3-Öc) 

where the following notation is introduced 
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t - Pn/(on)r (3-9a) 

ß - (25/u  ) du /dl (3-9b) e       e 

a ■ u2/(c T ) (3-9c) 
6 p   6 

The above Bqs.   (3-8) can be written without the continuity equation which is automatically satisfied with 
the introduction of the stream function ♦ • f j2%J.y{   .    The velocity components become 

Purf ■ d*/dy -our!? of/oil (3-10a) 
D e    D 

pvrj-- ÖK/ÖX - sl2VJC     JT(ofi)r ue rjj  \2l || ♦ fj /(2§) -  (oVöx)(öf/oTl) (3-10b) 

With F =• df/dT| and the definition of V, the following is obtained 

V - -  (2? df/d$ ♦ f) (3-11) 

The governing equations become 

x - Momentum 

of /öf de    öf de\    i d   /, de\      de . n§ /d2f\2 r, .-* 

The boundary conditions for the foregoing equations are as follows: 

At wall (without mass transfer and specified wall temperature) 

At outer edge 

T) - 0 :  F - V « f - 0 and 6-e (3-13) 

T) - T)  :  F - 6 - öf/öTl - 1 (3-lU) 

To complete the governing equations initial conditions can be obtained at I - 0 from Eqs. (3-8) or 
(3-12) which become ordinary differential equations. 

U. SIMILAR SOLUTIONS 

U.l Similar Boundary-Layer Equations 

The partial differential equations for the boundary layer can be reduced to ordinary 
differential equations when I - 0 or when the ^-derivatives are zero. At the tip of a sharp body 
or at a stagnation point, 5=0. The flow along a flat plate and incompressible wedge flow have the 
^-derivatives zero. Also, the assumption of local similarity (5-derivatives zero) can be used to 
obtain approximate solutions to some flows. The usefulness of similar solutions is of limited value 
now that complete two-dimensional flow solutions can be readily obtained. However, there is the need 
to obtain profiles of the dependent variable in order to have the initial conditions for the two- 
dimensional solutions. These profiles are obtained from the similar form of the governing equation 
which for Eqs. (3-8) become 

dV/dT] + F - 0 (U-la) 

d(i dF/öT|)/öTl - V dF/dT] + 0(0 - F2) - 0 (U-lb) 

d(£ de/ÖTD/ön - Pr V d0/dT] + Pr at (dF/dTl)2 - 0 (U-lc) 

while Eqs.  (3-12) become 

*" (* U) *! U *B ce"l8f/8T,)2]" ° (k'2a) 

!,( (* f^) ♦ Pr f f| * Pr at tfl/il?)2   -    0 (U-2b) 
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For thB similar form  V - -f.      The similar equations constitute a system of nonlinear, ordinary 
differential equations and are of the two-point boundary value form with the boundary conditions 
previously given in Eqs.  (3-13) and (3-lh)-    At present, there are no computer library subroutines for 
solving this type of problem, but a variety of techniques have been used and some will be described 
in the next sections.    A more complete study of numerical methods for solving two-point boundary-value 
problems is given by Keller,"*    for example. 

U.2    Initial  Value Methods  (Shooting) 

This procedure changes the boundary-value problem into an initial-value problem.    New boundary 
conditions are assumed at one end of the interval of integration such that sufficient initial conditions 
are available to start the solution.    The assumed boundary conditions are changed until the integrated 
equations satisfy the original boundary conditions at the other end of the interval.    The similar boundary- 
layer equations are usually written as a system of first-order ordinary differential equations which then 
allows any of the standard integration procedures to be employed.    Then a Newton-Raphson technique is used 
to iterate on the boundary conditions that have to be determined as initial conditions.    This type of 
procedure has been applied to the compressible boundary layer for a perfect gas by Reshotko and BeckwithJ4 

and for a real multicomponent air mixture by Lenard.'*6    For the more complicated problem,  there can be as 
many as seven boundary conditions that must be assumed and iterated on until the outer edge conditions are 
satisfied.    Not only does the initial-value method rapidly become exceedingly difficult to apply to 
boundary-layer problems with complex flows,  it is also difficult or impossible to make the procedure 
converge.    The nature of the last problem has been illustrated by Fay and Kaye38 for a linearized 
equation.    For this example the solutions consist of exponentials and if the guessed initial condition 
is not correct, an extraneous part of the solution grows exponentially and will dominate the initial- 
value solution. 

Other initial-value methods have been used to improve the convergence of the Newton-Raphson method. 
Nachtsheim and SwigertJ? have used a least-squares convergence criterion method which introduces 
additional perturbation, ordinary-differential equations.    Another idea of integrating initially to a 
value of the independent variable less than the desired value has been investigated by Roberts and 
Shipman.30    The boundary conditions can be satisfied for a smaller than desired value of the independent 
variable.    With  this procedure repeated several  times,  the solution can possibly be extended to the end 
of the desired interval.    A similar method has been investigated by Keller3    where the interval is 
divided into several subintervals. 

Perhaps the most successful initial-value approach uses a Newton-Raphson technique to linearize the 
governing equations.    Then the linear equations are used to obtain a particular solution and a homogeneous 
solution for each boundary condition.    The particular and homogeneous solutions are then combined such 
that all of the boundary conditions are  satisfied.    This approach was first suggested for boundary-value 
problems by Hestenes^ and was later developed further by Bellman and Kalaba40 and referred to as quasi- 
linearization.    This technique has been used by Radbill4     to solve the Falkner-Skan equation and has been 
investigated further by Libby and Chen4"5 where the question of uniqueness is considered.    It should be 
noticed that the shooting method with quasilinearization can encounter difficulties if the initial-values 
solutions grow exponentially and become very large over the interval of integration. 

A parametric differentiation technique has been applied to the solution of nonlinear flow problems 
by Rubbert and Landahl.4d    This method is appropriate for a problem with a parameter in the governing 
equations and where a solution exists for one value of the parameter.    The technique then proceeds to 
find the solution away from the known solution with changing values of the parameter.    The Falkner-Skan 
equation has been solved with 0 being the parameter and the resulting differential equations being 
solved with the Runge-Kutta integration method.    Although the initial value method was used, for this 
problem the methods of the next section could also be utilized. 

U-3 Finite-Difference Methods 

In this approach the derivatives in the governing equations are replaced with finite-difference 
relations and the resulting equations are solved such that all the boundary conditions are satisfied. 
For nonlinear ordinary differential equations such as the boundary-layer equations, the finite-difference 
method results in a system of nonlinear algebraic equations.    In all of the methods the governing equations 
or the differential equation must be linearized in order to obtain a system of linear algebraic equations 
which can be solved readily.    With this procedure it is necessary to assume an initial guess for the 
dependent variables.    Then an iteration process is required until the guessed variables match the calcu- 
lated variables from the solution of the linear algebraic equations.    The manner in which the linearization 
is performed on the differential or difference equations is very important.    The method of nonlinear 
simulataneous displacements has been used by Lew 4  to solve the Falkner-Skan system of nonlinear difference 
equations.    With this approach only one dependent variable at one grid point is assumed unknown in each 
difference equation with the remaining variables assumed known from a previous iteration.    If the one 
dependent variable appears in a nonlinear manner, Newton-Raphson linearization is applied to give a 
linear equation.    This method requires the solution of explicit algebraic equations for the dependent 
variables which are relatively easy to solve.    However,  the convergence of this method is not as rapid 
as the methods which are described subsequently.    Another approach is to uncouple the governing equations 
by considering only one dependent variable is unknown in each equation.    When that variable appears in a 
nonlinear form in the equation, some convenient linear form is used to replace these terms.    The result- 
ing equations will be of tridiagonal form for each governing equation.    This type of procedure has been 
used by Varzhanskaya, Obroskova and Starova,4b  Holt,4b and Fay and Kaye."^ Another method to linearize 
the equations is to use a Newton-Raphson or quasilinearization approach.    With this method the nonlinear 
terms are evaluated with a truncated Taylor's series.    The resulting equations will be coupled and the ^ 
finite-difference equations will be of block tridiagonal form.    This approach has been used by Casaccio 
(called method of linear corrections) and Sylvester and Meyer,40  Keller and Cebeci4a and Werle and 
ßertke.&ü    The previous linearization considered above usually results in a simpler system of difference 
equation to be solved but requires more iteration to obtain a converged solution.    The Newton-Raphson 
approach results in more complex difference equations but requires fewer iterations to converge.    This 
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procedure also appears in general to have a better chance of converging. 

To illustrate the finite-difference method with Newton-Raphson linearization, the incompressible 
boundary-layer   (Falkner-Skan) equations are considered.    For this  case t ■ 1 and 9=1.    The present 
approach was suggested by Davis and used by Werle and Bertke.60    The continuity equation,   (U-la),  is 
evaluated at the point (j - *g) with the terms in the equation evaluated with second-order accuracy 
(truncation error of the difference equation is of the order of the step-size squared) which gives 

(dV/ÖTl)jJg - (f   - V*ml)m * O(AT)2) (U-3a) 

FjJg '  <Fj  + Fj-1)/2 + 0(AT)2) (^3b) 

where AT) » (T|    - T|      ).    The resulting expression for the continuity equation becomes 

vj' Vi -(1/2) Äll(Fj* 't^ (Wi) 

The nonlinear terras in the momentum equation,   (U-lb), are linearized with the Newton-Raphson 
procedure which gives 

F2 - 2 IFF - F2 (U-5a) 

V oF/öTl - - V dF/öT] + V ÖF/öT) + V öF/dT] (U-$b) 

where all quantities are evaluated at j and quantities with a bar are determined from a previous 
iteration.    The terms in Bq.   (U-lb) are written in finite-difference form at the point j with the use 
of Eq.  (U-S) to obtain 

o2F/o712 -  (jr       - 2F    ♦ r      )/&T? (U-6a) 

V OF/07] "W' Vi>+ W " F
J-I> * Wi" Vi} /2AT|        (u_6b) 

The momentum equation, (U-lb) becomes the following finite-difference equation with the use of 
relations (U-5a) and (U-6) and all terms have been multiplied by (-AT]2/2): 

where 

-VJ-I 
+ YJ " C

JVI
+ VJ * D

J      J-
2

,3,-..J-I aw) 

1   - (14 V   AV2)/2 (U-8a) 

B    - 1 ♦ AT]2 3F (U-8b) 

Dj • (A7)2/2) 

C. - (l - Vj  AV2)/2 (U-8c) 

8 ♦ 0F2 ♦ fjfl1^ - Fj_1)/(2ATl)j (U-8d) 

a3 '  (F"d*l " Vl} M (^8e) 

The wall boundary conditions are located at the point j - 1 where F,   ■ V.   ■ 0 while outer edge boundary 

conditions are located at the point j - J where F. - 1.    The finite-difference equations,   (U-U) and 
(U-7), are  coupled and are used along with boundary conditions to determine the two unknowns   V. and F , 

at the grid points j - 1, 2,-"J.    The coefficients of Eq.   (U-7) depend on the variables V   and F 

which are known from an initial guess or the previous iteration.    For the initial guess, the present 
approach sets F.  ■ 1.0 everywhere except F    - 0 and then V. is determined from Eq.   (U-U).    The 

difference equations,   (U-U) and (U-7), are readily solved with a modified tridiagonal algorithm 
developed by Davis as reported in Wsrle and Bertke.    An extended version of this method is given in 
Appendix A.    Although this method only looks slightly more complex than the usual Thomas algorithm which 
is given in Appendix B, the modified version requires approximately twice the computer time.    In order 
to uncouple the difference equation, many authors assume that the term a.V. in Eq.  (U-7) is known. 

J J 
With this procedure Eq.   (U-7) is of the usual tridiagonal form and Fj is obtained with the Thomas 
algorithm.    Then V.  is obtained from Bq.   (U-U) and an iteration procedure is performed until F. and V 

J J J 
are known to the desired accuracy.    This approach converges slower than the Davis coupled method which 
uses Newton-Raphson linearization and has quadratic convergence  (*•).    For the Blasius equation and the 
same criterion for convergence, the coupled method requires U iterations while the uncoupled method 
requires 13 iterations. 

* If 6*1' is  the error  in the computed solution  for the ith iteration,  then  b^*1'  - KCö'
1
']

2
 where 

K is a constant. 
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If the approaches are employed with a  large step-size ATI or the maximum T) is very large, there 
will be an oscillation of the results with each grid point location.    If V is assumed known and Bq. 
(l*-7) is taken as the difference equation, then Keller30 has shown there is a unique solution if the 
following condition   is   satisfied for the step-size: 

ATI * 2/|v| (U-9) 

With T)    - 6,  V « -U.78 which gives ATI * 0.1*2. Since V increases with T|, then with T)    large the step- 
© G 

size AT) must be much smaller.    Also, Greenspan bl  states that the solution of the tridiagonal equations, 
(U-7)>  (with V known) exists and is unique if the system is diagonally dominant (B    > |A  |  *   |c.|). 

If 0 > 0, then diagonal dominance is assumed if relation  (U-9) is satisfied.    Price,  \iarga, and Warren 
have obtained relation (U-9) as a necessary and sufficient condition for non-oscillatory solution of 
Eq.   (U-7) with Va constant and ß » 0. 

Another finite-difference method for solving the boundary-lay er equations has been developed by 
Keller and Cebeci49 which uses the Keller53 midpoint scheme.    The method writes the governing equations 
as a system of first-order equations which for the incompressible equation,   (U-2a), gives 

of/dT) - u (U-10a) 

öu/öTl - v (li-10b) 

dv/oT) - -fv - 3(1 - u2) (U-10c) 

with the boundary conditions 

f(o) - 0 ;    u(o) »0   and   u(») - 1 (U-ll) 

With the midpoint, second-order accurate finite-difference approximation, the governing equations 
become 

tfj - W* - C*3 
+ Vi)/2 (u-12a) 

(Uj - ^_1)/AT1 « (v    ♦ vj.!)/2 (U-12b) 

(vj - vj-:L)/ATl - -(fv)jJg - B ♦ Pu2^ (U-12c) 

Equation (U-12c) is linearized by Keller and Cebeci by first writing: 

f - f ♦ 6f (U-13a) 

u - ü + 6u (U-13b) 

v - v + 6v (l|-13c) 

These quantities are substituted into Eq. (U-12c) and quadratic terms in 6f, &u, and 6v are neglected. 
Again, the quantities with a bar are obtained from the previous iteration, and f, u, and v are the 
results from the iteration. In the work of Keller and Cebeci, the difference equations are written with 
6f, 6u, and 6v as the unknowns being determined. The approach developed here will be to use f, u, and 
v as the unknowns which is similar to that developed in the previous method, Eqs. (U-U) and (U-7). 
Equation (li-12c) is linearized with the relations 

fv - -fv + vf + fv (U-llia) 

and quantities at j-*g are evaluated with 

u2 - 2uu - ü2 (U-liib) 

wj-% ■ {wi+ V)/2 (u-l5) 

where W represents f, u, or v. When the above relations are utilized in Eq. (U-12c), the linear form 
becomes 

a/j" VJ-I + YJ " YJ-I + °JTJ - YJ-I " SJ (u"16) 

where 

aj 
1 
2 

AT,vjJg 

*J- 
1 

'  2 
Airv* 

bi 
-  -AT] ev* 

V AT]  0 V* 
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cr1+ t ^V* 

T1- f AT,fj* 

S.  - tfltfv)  j^ -  ATI 9(1  ♦ ü^jg) 

The difference equations for the present scheme are Eqs. (i|-l2a), (U-12b), and (I4.-I6) with j - 2,3,1*, •••J. 
As Keller has shown, these equations can be written as a system of block-tridiagonal equations. The 
boundary conditions (U-ll) and the difference equations are written as the following system of equations 
where Eq. (U-12b) with j » 2 is written as if it is a boundary condition: 

fi-° 

u2 " I Al1(v2 + V " ° 
In the following, j - 2,  3, U, ■ J - 1 

t. - f. ,  -4    ÄT](u4  ♦ u4 J - 0 
3        j-l      2 •j   >1' 

VJ " aJ fM + VJ " VJ-I
+ VJ" Vj-i * sj 

while the remaining equations give 

vi-uj-t A1,(vi + V"° 

fj - fj-i - I A^ vi - 1 ^ 

(li-17a) 

(U-17b) 

(U-I70) 

(U-17d) 

(U-17e) 

(U-17f) 

(U-17g) 

ajfj " VJ-I - VJ-I * C
J

V
J - C

J
V
J-I ■ S

J - bJ 

»J-1 

The above Eqs. (U-17) are written in matrix form as 

*A " <iw2 
m h 

"VH ' ?i • CiVl ■ DJ    3-2,3,"-,J-l 

where the various terms are 

-AJWJ-1 + BJWJ * DJ 

(U-l7h) 

(U-17i) 

(U-I8a) 

(U-I8b) 

(U-I8c) 

h 

1 0 0 

0 1 0 

0 0 -AV2 

cl 

0 0         0 

0 0        0 

0 -1      AV2 

1 AV2    0 

■3 *i   ?3 

0  0 

°1- 

V 
1 -AV2 0 

aJ  bJ  °J 
0   -1 -AV2 
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G 0 0 

°1- 0 0        0 

0 -1      ATI/2 

l AV2      0 

AJ- *J *J        *J 

0 0          0 

&V2 

V V 
1 

■bJ 

D. 
J 

S. 

BJ- 

0 10 

The above Eqs. (li-18) are solved with the block-tridiagonal method which is described in Appendix B. 
The midpoint scheme has rapid convergence of the iteration procedure as in the Davis coupled method, 
but the solution requires the use of the more time-consuming block-tridiagonal difference equations. 

The foregoing midpoint, finite-difference scheme has been utilized in a method to obtain Falkner- 
Skan solutions with reverse flow by Keller and Cebeci. 4 Also, the previously described Davis coupled 
scheme has been used to obtain reverse flows by Werle and Bertke.b0 

5-    NON-SIMILAR SOLUTION TECHNIQUES 

5.1    Introduction 

Some of the various numerical techniques that have been employed to solve the two-dimensional 
boundary-layer equations along a surface are presented.    A complete description is not intended but only 
the basic ideas of the methods will be given.     In order to illustrate the various techniques,  the 
incompressible equations are employed and are  obtained from  Eqs.   (3-8) where  6=1 and i » 1 which gives 

2? öF/dS + öV/öT] + F - 0 (Ma) 

or Eq.  (3-12a) becomes 

2SF ÖF/Ö? ♦ V ÖF/ÖT1 + ß(F2 - 1) -  ö2F/oT]2 
(5-lb) 

0F /öf ö2f        Of ö2f\      ö3f d2f I        /df\2| 

The boundary conditions have been given previously by Eqs.   (3-13) and (3-lU). 

(5-2) 

In the description of the various finite-difference schemes a uniform grid will be employed.    The 
grid point locations are given by T|       ■ T|.  + &I\ where Ti    » 0 and j * 1,  2, 3,***> J and §.+,  - §.   + A§ 

where ^ - 0 and i ■ 1, 2, 3,---> I. 

Also, many of the non-similar techniques reduce to the similar solution problem and an understanding 
of the previous section is necessary to understand this section. 

5-2    Semi-Discrete Method  (Boundary Value) 

This approach was originated by Hartree and Wbmersley66 as a technique to change partial differential 
equations into ordinary differential equations for solution on a mechanical differential analyzer.    The 
main feature of this method for two independent variables is that derivatives with respect to one of the 
variables are replaced with finite-differences.    The resulting equations are ordinary differential equations. 
In the present case the derivatives in the flow direction are replaced with finite-differences and the 
resulting equations are of the boundary-value type.    This approach is also referred to as a differential- 
difference scheme and the method of lines in the Russian literature which has been reviewed by Liskovets.66 

The method was first applied to the boundary-layer equations by Leight67 and later by Manohar.58    The 
method has been developed further and applied to a variety of problems by Smith and colleagues.    This work 
is described in the review article by Jaffe and Smith.6 

There have been three formulations of this procedure as follows: 

(a)    Point method - The governing equations are evaluated at the point  (i+1) with the 
^-derivative utilizing the independent variable at the point (i+1) and one or more 
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values which have been determined previously.    The derivative is expressed as 

(ÖF/o§)i+1 - aFi+1 • bFi • cFi_1 ♦ ••« (5-3) 

where the coefficients a, b,  c,-«- depend on the choice of the distribution of the 
grid system.    The resulting ordinary differential equations will have F.+, and V.+1 

as the independent variables with all other quantities known. If coefficients a 
and b are non-zero, the method will be first order in the I direction. With the 
coefficients a, b, and c non-zero, the method becomes second order. 

(b) Mean method - The governing equations are evaluated at the point  (i+*g) where the 
simplest formulation uses the trapezoidal rule which results in the following for 
the derivative: 

(oF/o?)^ - (Fi+1 - Ft)/A5 (5-l4a) 

All the other terms in the governing equation are evaluated, for example, as 

ri* - I <Fi*l * V **) 
where F can represent a derivative. The product terms can be written in two 
forms with the following chosen: 

(V ÖF/ÖTI)^ - Vi+3g (oF/aT))^ (5-Uc) 

(c) Least-Squares method - This method has been utilized to damp out initial 
profile errors when the solution is started far downstream with a small 
step-size.  The S-derivative is approximated with a least-squares method 
where, for example,  a quadratic curve is used with four grid points. 

When any of  the above procedures are applied to the boundary layer Eqs.   (5-1) or (5-2), the resulting 
equations are two-point boundary-value, ordinary differential equations.    Therefore,  the equations are 
nearly the same as the similar equations given in Eqs.  (U-l) and (U-2) and any of the solution techniques 
described in Section k can be utilized.    In the work of Smith and colleagues a shooting method was 
employed to obtain the solution while a better approach would be to use the  finite-difference method of 
Section I4.3.    When the mean method formulation is utilized with the finite-difference method, the 
resulting difference equations are the same as the Crank-Nicolson method which will be described subse- 
quently in Section 5«U.U. 

In order to improve the accuracy of the solution in the direction normal to the surface, Peters59* 6' 
has used a Hermitian finite-difference procedure.     The partial differential equations are reduced to a 
two-point boundary-value problem with the use of the difference relation (5-3).    The velocity F is 
approximated between three grid points with the fourth-order polynomial 

F(T1) - I FJ+1(t2 ♦ t)  * Fj(l - t2)  ♦ I F
yltt2 - 0  + «t(l " t2) ♦ 0t2(l - t2)     (5-5) 

where t »  (T) - T| )/AT) and t ■ 1,  0,  and -1 which gives F      ,  F., and F    .. ,  respectively.     The derivatives 
of F become J J L      J J_i 

I FJ+1  (2t ♦ 1) - 2F^t ♦ I ijjC» " D + ad " 3t2) ♦ 3(2t - Ut3)J/äT|        (5-6a) 

£-§ - (FJ+1 - 2Fj  + fyl - 6ot ♦ 6(2 - 12t2) /ATI2 (5-6b) 

The above derivatives,   (5-3) and (5-6), and the function,   (5-5), are used to evaluate the terms in the 
momentum equation,   (5-lb).    This finite-difference equation is evaluated at the three points t = 1, 
t = 0, and t * -1 which gives the following three equations: 

hi Fj-i * ^2 Fj * hi F
M ♦ hka" his' Vi (5"7a) 

L21 Vl * L22 FJ * L23 F
3-l 

+ hk " * L25 B " di (5"7b) 

hi Fj»l * L32 Fj * S3 FJ-1 * *» " * L35 S " dJ-l (5"7C) 

where the coefficients have been given by Peters.    These equations are used to eliminate the unknowns 
a and 0 which give    the tridiagonal equations 

OF 
oil 

-VJ-I * VJ - C
J
P

J*I * D
J (5"8) 
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which is 30lved with the procedure given in Appendix B.    The dependent variable V is obtained from 
Eq.   (5-la) with the use of Simpson's integration formula.    Since the governing equation,  (5-lb), has 
been linearized to obtain the linear difference Bqs.   (5-7), an iteration between the solution of Eq. 
(5-8) and the solution for V is required.    Since a Newton-Raphson linearization has not been used,  the 
convergence of the iteration is probably slow and one would question if Uth order accuracy has been 
achieved.    This procedure has also been used by Krause01 for solving boundary-layer flow, and he refers 
to it as the "mehrsteller"-integration technique. 

5.3    Semi-Discrete Method (Initial Value) 

This method is the same as the previous method except the derivatives across the boundary 
layer in this case are replaced with finite differences.    The resulting equations will be first order 
and of the initial value type.    Steiger and Sepria<!  used this method to solve the von Mises form of 
the boundary-layer equations.    The scheme was not successful as the resulting ordinary differential 
equations are stiff and were not readily solved with a Runge-Kutta integration procedure.    Lubard and 
Schetz6**   used the semi-discrete method and applied it to the boundary-layer equations in physical 
coordinates.    This paper indicates the method is very successful as the modified Runge-Kutta integration 
scheme of Treanor34   was used.    When this procedure is applied to Eqs.   (5-1), the resulting ordinary 
differential equations become 

2? Fj sr" - vj (Fj+i - Fj-i)/(2AT1) - ß(i -x) + (Fj+i - 2Fj* F
yi)H J ■ 2>3' •■••J -1 (5~9> 

where 

-5 • \ - P (2$ |f + F| dTi (5-10) 

The trapezoidal rule is used to evaluate the integral and with the boundary condition F,  ■ 0 the above 
becomes 

<*\ v £i   /      OF 
^■^-l^^^jl-^Et2^*^) (5-n) 

n-2 

Equation (5-H) is substituted into Eq.  (5-9) to obtain a system of J-2 nonlinear,  ordinary differential 
equations of the form 

OF / OF   v (n - 2,3,---,  0 - 1 

This is not the standard form for integration subroutines but with additional algebra can be written 
in the usual form without the derivative appearing on the right side of Eq. (5-12). Since these 
equations are stiff, one of the recently developed computer programs, such as the Gear b method, 
should be used. These computer programs feature variable order methods, automatic step and error 
control, and are capable of effectively solving stiff, ordinary differential equations. 

5.U Finite-Difference Methods 

S.U.I Explicit (Binder66-Schmidt67) - As early as 1938 Prandtl68 proposed an explicit finite- 
difference method for solving the boundary-layer equations. A new impetus was provided in 1955 when 
Flügge-Lotz*6 applied an explicit scheme to the Crocco form of the boundary-layer equations. A method 
for handling the boundary-layer equations in physical coordinates was developed by Wu*9 where the 
proper form of the continuity equation was determined. When this scheme is applied to Eqs. (5-1), the 
resulting difference equation for the momentum equation is 

and the continuity equation is 

Win - W* * ?i*i<Fi*i - 'iW * (!i ■ ViWAT| +1 V 'M>I* " °  (5-13b) 

The unknown quantities in each equation are underlined where F's at (i*l) and various grid points j 
across the layer are  first determined from Eq.   (5-13a).    Then Eq.   (5-13b) is used to determine the Vs 
at  (i+1) and the grid points j.    The boundary condition ^ - 0 is used to obtain the solution of 

Eq.   (5-13b) and the boundary conditions F.   ■ 0 and F    - 1 are used to obtain the complete solution of 

F at  (i+1). 
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This method is second-order accurate in the direction across the boundary layer and first-order 
accurate in the flow direction. Wii has given the following restriction on the step-size for a flat 
plate incompressible flow as a sufficient condition for stability of the difference scheme: 

which becomes in the present coordinates 

He has also given the following restriction 

Ax < (Ay u/2v) 

AS < SFATT 

Ay < 2\/v 

and this resembles the previous condition,   (U-9), for the similar solutions. 

(5-U*) 

(5-lUb) 

(5-15) 

5-Ü.2    DuFort-Frankel69 - This explicit method was first used by Raetz70 for solving the 
three-dimensional boundary-layer equations.    More recently it has been employed by Pletcher      for 
solving turbulent boundary layers.    The advantage of this scheme over the usual explicit scheme is 
that the DuFort-Frankel scheme is stable without restrictions on the step-sizes.    However,  there are 
disadvantages which will be discussed after the method has been described.    The present formulation 
follows that of Pletcher, but he applied it to the boundary-layer equations in physical coordinates. 
The momentum equation is evaluated at the point (i,j) as follows: 

h \i (!üi - Fi-iV45 * vi,j(Vi - Fj-i V<241» 

*Ki -x)' <Vi+ Fj-i>i - tfiii+ Va}J'rf " ° (5"l6a) 

while the continuity equation is evaluated at the point (i+1, j-^g) and becomes 

*i+l <Fi+l " Fi-l>J (Fi+r
Fi-iVi|/(2A§) + ^ * Vi W^ + 5 (Fj + rMW 0   (5-l6b) 

Again,  the unknowns are underlined and after the F's have been obtained,  the  Vs are then calculated. 
In this method three levels of information in the 5-direction have been used.    The continuity equation 
is first order in the ^-direction and second order in the ^-direction while the momentum equation has 
the following truncation error: 

(AS/ATI)' ö2F/öC2  + 0(A52)  + 0(AT]2) 

2        2 Since in boundary-layer theory d F/5?    is assumed zero,  the first  term in the truncation error should be 
small.    This unpleasant feature  of the truncation error of the  DuFort-Frankel method does not appear to 
be a problem for the boundary-layer equations, but the step-sizes should be chosen to keep this term 
small.    The present formulation is first order in the  5-direction and requires two initial profiles of 
data to extend the solution downstream.    In the work of Pletcher the initial profile of data is used 
with an explicit-difference   scheme   to generate the second initial profile of data.    Again, this limits 
the method to a first-order scheme in the flow direction. 

5.U-3    Implicit -  The use  of an implicit-difference scheme was first applied to the boundary- 
layer equations in physical coordinates by Rouleau and Osterle.7*1    This scheme has the property of 
being stable and is first order in the flow direction.    The difference equations in this case are 

2Wi - Fi>/a? + vi,j <V - Wwl 

•el'WiV1 " (V " 2Fj + Fj-i)/a^ (s-17«) 

and 

2?i+i 
(Fi+i - FiVA5 + <vj - ViWA11 +1 (Fj + ViW (5-17b) 

The unknowns in the momentum equation, (5-17a), are F.,, F., and F  at (i+l). Rouleau and Osterle 

used a relaxation procedure to solve these simultaneous difference equations. The appropriate approach 
is to use the tridiagonal solution technique described in Appendix B. After the F's have been obtained, 
the continuity equation, (5-17b), is used to obtain the V's across the boundary layer. 
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5'k'h   Crank-Nicolson'° - The initial application of this method was made by Kramer and 
Lieberstein 6 to the Crocco form of the boundary-layer equations.    Later at about the same time 
Brailoskaya and Chudov19 in Russia and Blottner and Flügge-Lotz^1 in the united States developed this 
approach for physical coordinates.    In all of these methods the finite-difference equations are 
written such that the unknowns appear as linear terms.    The momentum equation,   (5-lb), is written as 

2Wi*,j (Vi" FiV41 * vi^,j [(Vi - 'H'W 
+ (Vi' Ti-ih\/W) 

* e'Fi,J 'fl.J - 2) - [(FJ*1 - 2FJ * RJ-A*1 + (FJ*1 - 2Fj * Vl^'^2' ' °  «-18a) 

and the continuity equation, (5-la), becomes 

<i* |(Fin - Fi>j • (Fm - hh-i\m' * <TJ " VW411 * 5 |<Vi * Vj * (Fin * FiVi| * ° (5'18b) 

When Bq. (5-l8a) is rearranged, it is the tridiagonal form 

-AJ FJ-I + Vi ■ ci V ■ DJ (5"19) 

and the F's can be determined with the alogrithm described in Appendix B. Then Eq. (5-l8b) is used 
to solve for V. j„ . and the solution is started at the wall where Vn - 0. This method and the follow- 

i^,j 1 
ing implicit schemes are stable without any restrictions on the step sizes. 

If this method is to be a true Crank-Nicolson scheme, then the terms F.^ . and V.^ , cannot be 
i-^,J     i+^J 

approximated at a previous grid point where they are known as is usually done. An iteration could be 
performed where these terms are evaluated as follows: 

h*,i' i <Fiu • V3 

with a similar expression for V.    It will be shown later that this approach is not the best;  the 
convergence rate for this type of iteration procedure is slow.    Although the Crank-Nicolson scheme 
can be second-order accurate in the flow direction, most procedures in practice are first-order 
accurate and iteration should not be performed with this solution technique. 

The Crank-Nicolson scheme has been applied to the combined continuity-momentum,  Bq.   (5-2), by 
Fus8ell and Heliums.74    The nonlinear terms are linearized (not Newton-Raphson) and an iteration 
procedure is employed.    Although the authors claim rapid convergence, the number of iterations is not 
given and the same objections as discussed above also apply to this approach.    Since a third-order 
derivative appears in Eq.   (5-2),  the derivative is evaluated with five grid points and the resulting 
implicit difference equations are of the penta-diagonal type.    This requires a more complex solution 
algorithm than the usual Crank-Nicolson schemes described previously. 

Fannelop7b  has also solved the continuity-momentum equation,   (5-2),  with a  Crank-Nicolson 
scheme.    In this approach Eq.   (5-2) is rewritten as 

and 
^K-I^)"S + f^ + ß(l-F2) ^ 

f 
f - fQ(5,0)  ♦  /       FdTl (5-20b) 

The Crank-Nicolson differences are used to replace the various terms in Eq.   (5-20a) where the terms 
are linearized such that the unknowns appear linearly.    Equation  (5-20b) is then used to determine 
the f's across the boundary layer.    Then an iteration procedure is used to reevaluate the terms that 
were linearized such that all terms are centered properly.    In this method the term (df/d^).  ,    , is 

initially set equal to  (df/d|)    ,       to start the iteration procedure.    Again,  this method has not 
used Newton-Raphson linearizatiöifVand it is questionable  if one should iterate to obtain a second- 
order scheme. 

5.^.5    Box Scheme - The basic idea for this approach was presented in Section U-3 for the 
Keller midpoint scheme.    The box scheme was developed by Keller'0 and has been applied to the boundary- 
layer equations by Keller and Cebeci.4 '    The governing equation,   (5-2), is written as a system of 
first-order equations by introducing two new unknowns, u and   v, which give 

df/oTl - u (5-21a) 

du/3Tl - v (5-21b) 
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dv/ÖT) ♦ fv + 0(1 - u2) ♦ 25/-U || ♦ v ||) - 0 (5-21c) 

The first two equations,   (5-21a) and (5-21b), are evaluated at the point  (i+1, j-^) which gives 

(fj " «MW« " I (uj + »3-lW (5"22a) 

(U
J - ViWffl -1 < v VA« (5"22b) 

Equation  (5-21c) is evaluated at the center of the box which is the point  (i-^s, j-*g) -    The various 
terms in this equation are written in finite-difference form as follows: 

9r/W) - [(Vj - Va)1+1 ♦ (v. - Vl)J/(24H) (5-23.) 

i |(fv)ltl ♦ JftjJ »43k) fv 

0u2 " I [(0u2)i+l + (ßu2)il (5"23d) 

2?u öu/ö? - 5^ (ui+1 ♦ u.).^ (ui+1 -u^j/A? ($-2*0 

2?v ar/as - ^ (vi+1 ♦ V)rt (f.+1 . r^jj/AS C5-23f) 

When the above relations, (5-23), are substituted into Eq. (5-21c), the nonlinear terms are 
linearized with the Newton-Raphson relations, (U-li|), and terms at (j-^g) are evaluated with Eq. 
(U-15); the resulting difference equation is 

VJ " VJ-I * YJ - VJ-I 
+ VJ - VJ-I • S

J ($-2k) 

This equation is the same form as Eq. (I4-I6), but the coefficients.in the above equation are much 
more complex than those in Eq. (U-16), and are given by Blottner.7' Equations (5-22) are also the 
same as Eqs.   (U-12a) and (l;-12b).    Therefore,  the present equations are tfce same as Egs.   (I1-I8) 
except new relations must be introduced for the coefficients a., a.,  b  ,  b  ,  c.,  and c.    The 

J      J      j       J      J J 
solution then proceeds as described previously with the block-diagonal method. 

As this method is implicit, it is stable like the Crank-Nicolson scheme without any restrictions 
on the step-sizes. 

5.U.6   Petukhov Method7*3  - This method was devised to avoid oscillations which can occur with 
a Crank-Nicolson scheme for problems with large local gradients in the flow direction.    To illustrate 
this method consider the partial-differential equation which is expressed as 

oF/a? - L[P] (5-25a) 

where 

LCF] - aQ a2F/aT)2 + ai ÖF/ÖT1 ♦ a2F + ^ (5-25b) 

Two steps are taken to advance the solution from (i) to (i+l) and these two steps are repeated in 
an iterative manner.    The finite-difference equations for the two steps are 

(Fi^S " V/(|A§) ' L[PW " \ A| d2p/d?2 + °(A52) (5-26*) 

(Fi+1 - F1^)/(|AS)  - L[Fi+1]  - £ A? a2F/a?2  ♦ 0(A§2) (5-26b) 

where 

Ö2F/Ö?2 -  (Fi+1 - 2F.^ ♦ F.)/(|ä§)
2 (5-26c) 

The quantities with a bar are evaluated from a previous iteration.    Since the coefficients in le qua 
I-   fe- Eq.  (5-25b) can depend on F, they would be evaluated with F from the previous iteration. 
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To investigate the characteristics of this finite-difference scheme,  Blottner7*  represented the 
right side of Eq.   (5-25) as 

L[F] -  (P - QF)/c (5-27) 

where the quantities € and Q are assumed positive to make the equation inherently stable. The 
T|-derivatives have been neglected in Eq. (5-25b) and this results in a linear, ordinary-differential 
equation for (5-25). The exact solution to this equation is 

Hl±) '  CA1 ♦ P/Q (5-28) 

where A * exp(-cp) and cp - A?Q/e.    The solutions of this equation with the Petukhov method is the 
same as Eq.   (5-28) except 

A - (1 - jj9)/(l +|<P ♦{; <p2) (5-29) 

while the Crank-Nicolson scheme gives 

A -  (1 - | 9)/(l * | <P) (5-30) 

For small values of cp, both the Petukhov and Crank-Nicolson methods are second-order accurate and 
are a good approximation to the exact exponential solution.    For large values of cp,  the Petukhov 
method has the appropriate asymptotic behavior of A approaching zero while the Crank-Nicolson method 
A approaches -1.    This indicates why the Crank-Nicolson method might slowly damp-out an error with 
an oscillating value. 

The complete details of how the boundary-layer equations are written in finite-difference form 
is not given by Petukhov.    It is stated that two iterations of the equations for each step M is 
reasonable.    This requires six evaluations of LCF] for each step A? while the Crank-Nicolson scheme 
described in Section 6 requires two evaluations.    The Petukhov method requires more computer time 
than the Crank-Nicolson scheme when the same step sizes are used, but should give more accurate 
results for some problems. 

5-U.7    Mult i-level Method -  With the semi-discrete method of the boundary-value type 
(Section 5-2),  it was indicated by  Bq.   (5-3) that the S-derivative could involve several levels of 
values of the dependent variable in the marching direction.    Davis and Flügge-Lotzn0 have used a 
three-level scheme where the derivative at (i+l) is expressed as 

öF/d? -  (3Fi+1 - UF.   ♦ Fi_1)/(2A?) * 0(A§2) (5-31) 

The ^derivatives are evaluated at   (i+l) with central differences.    Terms, which should be evaluated 
at (i+l) but would give a nonlinear difference equation, are approximated with extrapolated values 
where the dependent variables at  (i) and (i-1) are used. 

This type of method cannot be used to start the solution away from the initial profiles or when 
the S-derivative is discontinuous.    The method is second-order accurate without iteration and no 
stability problems were encountered.    A second-order scheme must be used to start the solution in 
order to obtain a second-order accurate solution downstream with a uniform grid A?.    Since the 
starting method could be used to continue the solution downstream, the multi-level method loses 
much of its appeal. 

5.5    Integral-Control Volume Method 

With this method,  the governing equations are integrated over a small control volume and 
the integral is evaluated by assuming linear or quadratic variation of the variables between the 
grid points.    This approach has been used by Shchennikov"x and Patankar and Spalding.4    The control 
volume is taken from i to i+l and from j-^g to j +3g which is the same as used by Patankar and Spalding. 
With the linear variation, the first term in Eq.   (5-lb) becomes 

2?F aF/a? .f1*1^ 5 ||i dl, dS/(48 m).\^ f(F1+1 ♦ F±>     (F1+1 - rt> 

* 6(F1+1 ♦ f±).  (Fltl - ti)t ♦ (F1+1 ♦ h)yl (,1+1 - F1)3_J (5-32) 

The other terms in the momentum and continuity equations can be evaluated in a similar manner.    The 
resulting momentum difference equation is nonlinear and is linearized with terms assumed known from 
a previous iteration to obtain the usual tridiagonal system of Eqs.   (5-1°)•    In the two references, 
the continuity equation has been eliminated with the use of von Mises variables or with the use of 
Eq.   (5-2).    In the work of Patankar and Spalding,  a linear variation of the variables is assumed and 
the method is second-order accurate in the direction normal to the surface.    Byrkin and Shchennikov8 

have used quadratic variation of the variables and the method is fourth-order accurate in the T]- 
direction. 
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In the paper by Shchennikov the boundary-layer equations are also written in divergence form and 
then are evaluated with the gauss formula which gives for each conservation equation (k ■ 1,2,-*-) 

\ * $L *x ^ +^L *y ^^ **  " ° ($"33) 

where L is the contour of the elementary volume Ax • Ay.    The quantities  if     and ♦     are the projection 
*k yk 

of the vector  if.   on the x and y axes, respectively.    The integrals in (5-33) are evaluated with the 

trapezoidal rule and the derivatives in the normal direction y are replaced with central differences. 
The resulting difference equations are nonlinear and of second-order accuracy in both directions if the 
complete equations are solved. 

5.6    Other Methods 

Although the intention has been to consider finite-difference methods for solving the boundary- 
layer equations,   it is worthwhile to at least mention some of the other useful methods.     Dorodnitsyn00 

introduced the method of integral relations and applied it to the boundary-layer equations.    Pallone84 

later used the strip-integral method.    The general method of weighted residuals for solving the boundary- 
layer equations has been thoroughly explored by Bethel8b and developed further by Bossel.8    In all of 
these methods the partial-differential equations are reduced to a system of first-order ordinary 
differential equations of the initial-value type. 

Another approach which has proved very useful is the matrix-integral method developed by Kendall 
and Bartlett.8      The boundary-layer equation,   (5-2),  is used and is integrated across strips from j 
to j+1.    The dependent variable f is approximated with a spline function over the interval and 
derivatives in the flow direction are replaced with finite-differences.    The resulting system of non- 
linear, equations are solved by Newton-Raphson iteration.     Ihe order of this method has not been 
determined,  and all of the numerical results indicate no stability limitations. 

The finite-element method has recently been U3ed by Baker6fa and Oden and Wellford89  for solving 
the boundary-layer equation.    The usefulness of this approach for boundary-layer flow at this time is 
an open question. 

6.    INCOMPRESSIBLE BOUNDARY-LAYER PROCEDURE 

6.1    Davis  Coupled Scheme 

The purpose of this section is to present in detail a good numerical method for solving the 
incompressible boundary-layer equations.    The method chosen is a Crank-Nicolson scheme which has 
coupling between the continuity and momentum equations.    This method was suggested by Davis and used 
by Werle and Bertke.~J    An investigation of the accuracy of this scheme and several others has been 
made by Blottner.7      Of the second-order accurate approaches,  this method has simplicity and for 
example,  is faster than the Keller box scheme.     In the future,   the use of higher order methods could 
prove to be better than the present scheme, but further work needs to be performed on this subject. 

Rattier than solving the incompressible equations,   (5-1), the compressible form,   (3-8), will be 
used where 6=1 and I « 1 for the present case.    The momentum equation,   (3-8b),  is evaluated at 
the location (i-^g,j) with the ^-derivative written as 

* ä<^ ■ I <Vi ♦ Vj i'i+i - Fiva? ■ I (Fk - FiV45        (6-i} 

The other terms in the equation are averaged between (i) and (i+1) and are at the position j which 
gives 

V ÖF/ÖT1 = i (V öF/öT|)i+1 + \ (V ÖF/dTl)i (6-2a) 

B(F2 - e) - | [B(F2 -  e)]i+1  ♦ i [0(F2 -  9)]. (6-2b) 

b(t dP/aiD/aii - | [a u 3F/aTi)/dT)]i+1 * \ bit VF/*W&\\ (6-20) 

The nonlinear terms are linearized with the Newton-Raphson procedure where the required relations 
are given in Eqs.   (U-5).    The derivatives are then evaluated with central differences which are 

(ÖF/ÖTl)^  =  (Fj+1  - Fj_1)i/(2AT1) (6->) 

[*U */tfi)/an]lfj - C*rt (F.+1 - V - tyh (F. - f^)\/rf (Mb) 
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The resulting difference equation for the momentum equation becomes 

(•YJ-I * VJ - VJ*>« * (»V)i*lJ " Vl.J « ■ 2^"J -1 

where 

■nw-^vV^W* 

Bi+U" (v«+ Wl^ *A7]2 h*l+ «M+ VH fi«M 

ci*l,J - (£J^ ■ *j AV2W2 

ai+i,j" «na - VA+i m 

(6-U) 

(6-5a) 

(6-5b) 

(6-5o) 

(6-5d) 

°i+i,j ■ Ai,/i,j.i+ ci,jFi,j+i - [<^+w+^1, Fi,j/2 

1 «2 11 

(6-5e) 

Quantities with a bar are evaluated from a previous iteration or are evaluated initially at (i) 
rather than (i+l). The continuity equation, (3-8a), is evaluated at the point (i+^s, j-*j) where 
the various terms are replaced with the following relations: 

war, . |(Vj - vj.1)itl . (Vj - Vi>i]/<241» 

F " K * 'M'W * <Fj * F3-l\\/h 

The resulting difference relation is 

(6-6a) 

(6-6b) 

(6-6c) 

(6-7) 

where 

Vij-Vi.j-i-^WWOj  J-2.3.-J 

dj • -2 ^ <s - Wi5)(pj+ Fj-i'i - (Tj - V*>i 

The two difference equations, (6-U) and (6-7), are coupled and are readily solved with the modified 
tridiagonal algorithm given in Appendix A. In the solution of these equations the boundary conditions 
are required and are obtained from Eqs. (3-13) and (3-lii) which are expressed as 

W' °- Fi*i,i • °-and Fi*i,j ■x (6-8) 

At 5 • 0, the partial-differential equations become the similar equation, (U-l), and provide the 
necessary initial conditions for the solution along the surface. The coefficients for Eq. (6-1;) 
remain the same as  those given by Eqs.   (6-5) except for the following; 

B
J " (£

J^ * li-\)n * '* B ?J 

vt* 0  ♦ Vj(FJ+1 - FJ_1)/(2AT1) ♦pp. 

(6-9a) 

(6-9b) 
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The subscripts (i+l) are neglected when the initial profiles are being obtained. These coefficients 
are the same as given previously by Eqs. (U-8) with 1=1.    The continuity equation, (6-7), at C " 0 
has c. ■ AT|/2 and d - 0 and is the same as Bq. (U-U). 

6.2 Edge Conditions and Location 

In order to obtain the boundary-layer solution, the inviscid flow velocity must be given, 
and for a body of revolution r. must be specified. With the velocity known, the pressure gradient 

parameter 0 is determined from Bq. (3-9b) and the transformed coordinate § is obtained from Eq. 
(3-5b). For example, for the Howarth problem of linearly retarded velocity field, the edge velocity 
varies as 

VU« " (1 " x/L) (6"10) 
where L is a reference length and U    is the free-stream velocity.    The transformed coordinate  I 
becomes the following when (Pn)    - fpn)^ «*'- l/CMJ)«, and r2J - 1: 

§ - xtl - x/(2L)] (6-11) 

The physical coordinate x in terms of § is 

x/L - 1 - y/l - 2S/L (6-12) 

The pressure gradient parameter becomes 

ß - (2?/L)/[(2?/L) - l] (6-13) 

For the Howarth problem analytical expressions can be determined for all of the above relationsj 
however, in general these quantities have to be determined numerically. In addition, the location 
of the edge of the boundary layer must be specified. For many flows the edge can be taken at T) «6 
and constant along the surface. This approach is appropriate for the Howarth problem except near 
separation where there is a rapid increase in the thickness of the boundary layer. If the boundary 
layer is zrowing, grid points can be added as suggested by Blottner and Flügge-Lotz/1 Patankar and 
SpaldLng"* have also developed a technique which adds points to the grid across the boundary layer 
as needed. The transformation (3-5a) has been modified by Beckwith and Bushneil 90 to account for 
the growth of turbulent boundary layers as follows: 

u J JjL \    Ddy h(2?)nX "e *b (6"l2l) 

2 1 
In their work j » 0, «XT « 1/V and P - constant. For laminar flow n - - while n « 0.8 to 1.0 for 

turbulent flows. Another modification of the transformation has been utilized by Blottner, Johnson, 
and Ellis*1 which is 

e     JQ 

In this case one has to specify how 1) varies along the surface which is not known in many cases 

until the problem is solved. This same approach has been used by Kendall and Bartlett*57 except the 
parameter T) is determined as part of the solution. At a certain Tj the velocity is specified to 

have a given value and 11 becomes an unknown in the problem. The approach of adding grid points for 

turbulent boundary layers with the Keller box scheme is described by Keller and Cebeci.9* 

6.3 Convergence of Iteration Procedure 

Since several of the quantities in the coefficient relations (6-5) need to be evaluated 
from a previous iteration, the required number of iterations of the difference equations, (6-U) 
and (6-7), must be assessed. This has been investigated by Blottner,7' and it has been shown that 
only one iteration is necessary to achieve a second-order accurate difference scheme in the ?- 
direction. This is illustrated in Fig. 1 where the error of the velocity gradient at the wall is 
shown as a function of ttie step size A? for the Howarth problem at I  - 0.8. The method of deter- 
mining the error will be described in the next section. For the smaller step sizes the slope is 
approaching a value of two which it should have as a second-order accurate scheme. 

The significant difference between the present scheme and other Crank-Nicolson schemes is the 
convergence rate of the iteration process to the desired second-order accurate result. If the 
momentum-difference equation is linearized and uncoupled from the continuity equation, the resulting 
process converges very slowly. This type of scheme was described in Section S.h'h and is obtained 
from Eq. (6-U) by assuming that V   . is known from a previous iteration or grid point. With one 

iteration this method appears to be a first-order scheme as shown in Fig. 1. The results with 
19 iterations show the proper second-order behavior with a slope of 2. Even with 9  iterations the 
solution does not have second-order behavior. 
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Figure 1.    Accuracy of Crank-Nicolson scheme with various AS for Howarth problem. 

In both the uncoupled and coupled schemes,  the results are second-order accurate in the T)- 
direction which is independent of the number of iterations performed. 

6.U   Accuracy of Solutions 

The only quantities that remain to be specified are the step-sizes AS and ATI which will 
determine the accuracy of the results.    At present there are no boundary-layer codes which automatically 
determine the step-sizes based on some desired accuracy of the results.    The usual procedure is to 
obtain solutions with several different step-sizes and if the solution does not change much,  it is 
then assumed that an adequate solution has been obtained.    A better procedure has been developed by 
Blottner where Richardson extrapolation is utilized to obtain an "exact" solution.    For the present 
Crank-Nicolson scheme, the method is second-order accurate in both coordinate directions and if W 
represents the solution at some location, then the following relation exists: 

H •"E + a AS    ♦ bATf  +• (6-16) 

where a and b are constants, W   is the computed solution, and W_ is the exact solution when the 
step-sizes go to zero.    If solutions are obtained with AT] » constant and A? • AS    and AS ■ *gAS , then 
Eq.   (6-16) is used to obtain the "exact" solution with AS - 0 but with a finite value of AT] which is 

H AS-0 
W

E 
+ bA7]2 - vX>+ j [vfv - w| (6-17) 

where W (ASn) is the solution obtained with step-size AS c      0 
judge the accuracy of the solutions with step-size AS 

Q.    The "exact" solution W^.- is used to 
as follows: 

% Error of W(ASQ) - W - V« KVo (6-18) 

A similar equation is used for solutions with other step-sizes.    At least three different step-sizes 
should be used to be sure the error is behaving as indicated in Eq.   (6-16).     Equations similar to 
(6-17) and   (6-1Ö) are used to evaluate the accuracy of the solution with various AT). 

The accuracy of the wall velocity gradient for various step-sizes A? has already been considered 
in Fig. 1.    With the Davis coupled scheme,  the wall velocity gradient for the Howarth problem has an 
error less than 1% at S a 0.8  (separation is at S « 0.090) with 8 steps taken along the surface.    The 
effect of AT) on the accuracy of the wall velocity gradient is shown in Fig.  2.    As the solution 
proceeds downstream, more steps are required across the boundary layer if the accuracy is to be 
maintained.    These results indicate that approximately 50 intervals across the flow are required in 
order to have 1% accuracy for the wall velocity gradient. 

The modified tridiagonal algorithm requires approximately twice as much computer time as the 
standard tridiagonal algorithm.    However, the uncoupled scheme requires many iterations and its total 
computer time is larger than the coupled scheme when a second-order accurate method is desired.    If 
only a first-order scheine is adequate,  the uncoupled scheme requires less overall computer time.    When 



the difference in computer times for the methods in Fig. 1 is taken into account,  there is a 
considerable  saving in computer time if a second-order method is used rather than a first-order 
method when accurate wall shear stress results  («1/0 are desired.    If very accurate results are 
desired, it would probably be advantageous to go to even a higher order method. 

Figure 2.    Accuracy of Crank-Nicolson scheme with various AT) for Howarth problem. 

7.    COMPRESSIBLE,  BOUNDARY-LAYER PROCEDURE 

The Davis coupled version of the Crank-Nicolson scheme is now extended to the compressible boundary 
layers,  Eqs.   (3-8), for two-dimensional and axisymmetric steady flows.     In  Section 6 the technique was 
developed for the compressible continuity and x-momentum equations.    Therefore,  the energy equation 
must now be written in finite-difference form.    Although there is coupling between the x-momentum and 
energy equations,  these equations will be handled in an uncoupled manner.    This has been shown by 
BGLottner      to be a reasonable approach for the problems that were investigated. 

The energy equations,   (3-8c), is evaluated at the point (i-^g,j) where the ^-derivative is written 
as 

2§F ae/ds -   (?F)i+1 
+ <SF)J   (ei+1 - e±) /AS 

o J 
(7-1) 

The other terms are first averaged between  (i) and (i+l) as done in Eqs.   (6-2) and then the nonlinear 
terms are linearized with the Newton-Raphson procedure,   (U-$).     The derivatives are evaluated with 
central difference relation as given by Eqs. (6-3).    The energy equation becomes the following finite- 
difference equation: 

(-A49 w + Vr SVA+i-0; j « 2,3,---J - 1 (7-2) 

where 

Ai*i,j ■ ('a v* * V
J Hi«* 
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Ai,dei,j-i * ci,3ei,3+i ir(ap/aT,)2li+1 
AV2 

The initial profile of 9 at S » 0 is obtained from Eq.   (7-2) with the coefficients simplified by 
setting all terms at  (i) to zero and setting L   ■ 5i±1 ■ 0.    The finite-difference equations,   (7-2), 
are of the tridiagonal form and are solved with" the Thomas algorithm given in Appendix B.    The boundary 
conditions have been given by Bqs.   (3-13) and (3-LU) which are expressed as 

91 "  \ " VTe (7-3a) 

6j - 1 (7-3b) 

In the incompressible case / ■ 1, while for compressible flow Eq. (3-9a) is used to determine the 
value of I.    If (Pn) » (^V),,, and a linear viscosity law (p. • CT) is used, then t  becomes with the use 
of the equation of state, (2-10), the following: 

Pe/P« (7-U) 

The pressure across the boundary layer is assumed constant.    The parameter a is also required and is 
defined by Eq.  (3-9c) which gives 

(v-l)Mi(u/Uj2/(T/T ) (7-5) 

In order to evaluate Eqs.   (7-U) and (7-5) the inviscid flow quantities at the edge of the boundary 
layer are required.    The classical approach is followed where it is assumed that the inviscid flow 
along the surface provides the boundary-layer edge conditions.    If the inviscid flow velocity at the 
surface is assumed known, then the isentropic flow relations for a perfect gas give 

Te/Ta 
+ |(V- DM* 1 -  (u/Uj< (7-6) 

Pe/Pa (T /Tj N  e 
Y-l 

(7-7) 

If the inviscid surface pressure is known, then the velocity is determined from 

vl/2 

Vü« 1 + i - (pypj 1^)J (7-8) 

and the temperature ratio is determined from Eq.   (7-6).    In either case, with the velocity or the 
pressure specified along the surface;  the parameters I and a can be determined from Eqs.  (7-h) 
and (7-5), respectively. 

For the compressible case the wall boundary conditions remain the same except an additional 
condition must be provided for  the energy equation.    As Eq.   (7-3a) indicates, one possible condition 
is to specify the wall temperature T . 

The convergence of the iteration procedure at each step and the accuracy of the foregoing scheme 
has been investigated by HLottner.7      The linearly retarded edge velocity problem was solved for the 
case with H^ - h,  T,. - TÄ, and T|    « 8 which has also been solved by Fitzhugh.9J    The results show that 

the finite-difference scheme is second-order accurate with the energy equation uncoupled and with one 
iteration at each 5-step.    The procedure described in Section 6.1i has been utilized to judge the 
accuracy of this problem.    The accuracy of the wall velocity gradient at I = 0.1 for various A§ with 
AT| ■ 0.2 and various All with A§ a 0.0025 is given in Fig. 3-    The curves have a slope of approximately 
2 which shows that the method is second-order accurate.    These results were obtained with one iteration 
at each §-step along the surface.    The results with the present scheme are compared with other numerical 
solutions which are given by Fitzhugh in Fig. U«    There are significant differences between the results 
which should be due to truncation errors as a result of too large step-sizes being used.    The solution 
of Blottner  (labeled present study) are "exact1' as far as the figure is concerned.    The linearly 
retarded free-stream velocity problem has also been investigated by Werle and Senechal94 and their 
results show similar differences when compared to the solutions of Fitzhugh.    The present finite- 
difference scheme has been used to solve a problem investigated by Werle and Senechal and the results 
are in excellent agreement except near separation where there appears to be a slight difference.    The 
accuracy of the present finite-difference scheme results for the skin friction parameters are tabulated 
below: 
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% Error of Cf\/£e 

0 0.0U2 

0.00U 0.0$9 

0.008 0.077 

0.012 0.097 

0.016 0.13 

0.020 0.17 

0.02U 0.25 

0.028 0.U0 

0.032 0.86 

0.03k 1.72 

0.036 26.0 

The results show that the accuracy has deteriorated significantly near the separation point. 

Figure 3«    Accuracy of the Finite-Difference procedure for the 

linearly retarded flow at M^ - h and T    - T^. 
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a» 

Figure U.    Results of present finite-difference scheme compared to other numerical 

solutions for linearly retarded flow at MÄ « U and T„ ■ T^. 

8.    TURBULENT BOUNDARY-LAYER FLOWS 

It would appear difficult to describe computational techniques for solving turbulent flows when 
the governing equations are not a unique system.    Even the type of the partial differential equations 
can change depending on the closure model used to determine the Reynolds stresses.    The turbulent 
energy equation approach by Bradshaw, Ferriss, and Atwell96  results in a system of hyperbolic equations. 
The method of characteristics was used to obtain the numerical solution.    Nash93 has used an explicit 
finite-difference scheme for the same type of turbulence model.    As the governing equations are not 
appropriate near a  surface,  an inner solution of the viscous sublayer is matched to the outer numerical 
solution in both of these papers.    All of the other closure models as described below result in parabolic 
partial-differential equations.    In the initial work on the prediction of turbulent boundary layers the 
mean-velocity-field closure has been employed by Mellor,97 Patankar and Spalding,* and Smith and Cebeci.9 

In the first of these papers the solution is obtained completely across the boundary layer.    Mellor used 
the Hartree-Womersley semi-discrete method for solving the governing equations where the ordinary 
differential equations are solved across the layer with a Runge-Kutta integration procedure.    Patankar 
and Spaltung used a  Grank-Nicolson type of finite-difference scheme which is not applied to the wall. 
A wall-function is introduced that gives the flow quantities at ihe wall as a function of quantities 
at the first grid point away from the wall.    Smith and Cebeci first use a Levy-Lees transformation of 
the governing equations and then use an implicit finite-difference scheme to obtain the solution across 
the complete boundary layer.    Due to the large gradients that occur near the surface, a variable grid 
system is employed.    A more complex closure approach with the mean turbulent energy closure scheme was 
initially investigated by Glushko,9*  Beckwith and Bushnell,  °° and Mellor and Herring.101    This approach 
introduces a transport equation for the turbulent kinetic energy and for boundary-layer flows this is a 
parabolic partial differential equation.    An even more complex closure approach is the mean Reynolds 
stress model which results in a system of equations for the Reynolds stresses.    Donaldson and Rosenbaum11J' 
have used this approach with the most recent work being reported by Varma,  et.al.10°     In this last paper 
the governing equations consist of nine coupled parabolic partial-differential equations.    The numerical 
solution is obtained with a forward-time and centered-space, fully implicit, finite-difference scheme. 

There are many other papers concerned with the numerical solution of the turbulent boundary-layer 
equations.    With the exception of the work of Bradshaw et. al.   and   Nash and the distribution function 
approaches, the turbulent boundary-layer equations are a system of parabolic partial-differential 
equations for the various closure models.    The number of equations depends on the closure model employed. 
Therefore,  the numerical techniques developed for laminar flows are also appropriate for turbulent 
flows.    However, there is one significant difference which has been indicated above and has been 
illustrated by Blottner10'* and is shown in Fig. $.    For a turbulent boundary-layer flow, an excessive 
number of grid points are required normal to the surface to obtain 1% accuracy of the wall shear stress, 
T.„ if a uniform grid spacing is used.    The introduction of the following nonuniform grid has been used 
«#" Smith and Cebeci: 

AM 
^ 

K AT] b* j - 2,3, -",(J - 1) (8-1) 
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where T]   - 7] + AT) , and TL ■ 0. This grid spacing has been used by several authors with a slowly 

varying grid (K « 1.02) which requires several hundred intervals across the boundary layer.  The Keller 
box scheme has been used by Keller and Cebeci3" with a rapidly varying grid (K - 1.82) with several 
tens of intervals across the boundary layer. A transformation of the independent variable can also be 
introduced as has been done by Roberts.1 b Another approach has been used by Davis106 where the 
Crocco form of the boundary-layer equations are used. The large gradients in the dependent variables 
near the surface are eliminated which allows a uniform grid system to be applied. The problems with 
this transformation for the laminar boundary layer have been discussed in Section 3. 

Following the format of the previous sections, we will now illustrate how the Crank-Nicolson 
scheme can be applied to a turbulent boundary layer flow. The variable grid scheme of Blottner107 

will be applied to the incompressible form of the equations where a mean-velocity-field closure model 
is used. The eddy-viscosity formulation of Keller and Cebeci9<i has been used in the paper by Blottner 
and will be used for any results presented in this section. The governing equations are given by 
(3-8) with 9 « 1 and £ - 1 + e/v where e is the eddy viscosity. 

The variable grid scheme is interpreted in terms of a coordinate stretching approach. A new 
coordinate N is introduced where a uniform interval AN is used and is related to the original coordinate 
T| by a relation of the form 

1 - T1(H) (8-2) 

The ^derivatives are transformed into the new coordinate system and central differences are employed 
to obtain 

(¥t\  -(*/*), ■ (Vl - »J-W hWd^) . 0<«*> (8-3a) 

and 

I. (< »a ■ Ir (' m\ j»/ «C [if IQjfrfl - {'WJfcH' 0(M2) (8-»> 
The present approach replaces the coordinate derivatives with finite-differences to obtain 

^ - (dVdN)j -  (T)j+1 - 11      )/(2fll) ♦ CKAN2) (8-W 

l\'.^ - (dVdH)j^ - (^1 * V/AN + °^2> t8"**) 

When these relations (Ö-U) are employed in Bqs. (8-3), the resulting difference equations for the 
derivatives are 

(aw/ail^ - (wJ+1 - wj-:L)/(Tij+1 - T|j_i) ♦ o(AM2) (8-$a) 

ld(£ ^H ■ 2lwvi - v/(Vi ■ v - WWJ - V)/(IIJ - Vx>l/(Vi - v+ O(AN2) 

(8-$b) 

The above derivatives are second-order accurate in terms of AN when a relation of the form of Eq.   (8-2) 
is used to specify the grid points.    For example, the grid spacing with the relation of Smith and 
Cebeci as given in Eq.  (8-1) becomes 

T1J»'HJ(K
J

      ° - I)/(K       °-l) j-l,2,3,---J (8-6) 

where N    - (j - l)AN and Nj - 1.    The values of K and ANQ are two parameters which are chosen to give 
the desired grid spacing. 

The finite-difference equation for the momentum equation,   (3-8b),  is obtained as described in 
Section 6.1 except the derivatives  (6-3) are replaced with the derivatives  (8-$).    The resulting 
difference equation is 

("Yj-l * B/j - CJFJ*A'l MaV)i*l,j ■ Vl,j     I -«A—.*-» (8-7) 
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where 

vi(J-|
u/rW?jHi+1

/2 (8-8a) 

Vij • VJ * ^i «i * W Fi*l,/i5 (8-8b> 

°I*I.J ■ [«"'>* - TJH^ (a-8°» 

* Mf2^' (^ * 51+1)<*i+1 * fj)/(24l) (8-8d) 

■Uj ■ H''^ * u/r)^L /2 * "V fA* (8-8e) 

Vhere V or F have a subscript (i),  the bar on these quantities is neglected as these quantities 
are known.    If Ij' - l and 8    ■ 1 at all grid points,  then the coefficients  (8-8) are identical to 
the   ones    previously presented in Bqs.   (6-5) for the incompressible,  laminar boundary layer.    At 
5-0, the coefficients  (8-8) remain the same with the subscripts  (i+1) ignored,  except the following 
two coefficients become: 

Bi+1>J - Bj (8.9a) 

Di*l,5 ' Sj (8-9b> 

The difference equation for the continuity equation,   (3-8a), is the same as previously given in 
Eq.   (6-7) except ATI - AT)   ,   - (T|. - 1]      ) in the coefficients for c, and d..    Also,  it should be 

J-TS J J--L J J 
noticed that A?, which appears in the coefficients (8-8) can change as the solution steps along the 
surface. The governing equations, (8-7) and (6-7), for the incompressible, turbulent boundary layer 
are solved as described in Section 6.1. 

Although it has been implied that the nonlinear difference equations have been linearized with 
the Newton-Raphson method, this is not completely true. The eddy viscosity e is a function of the 
velocity F and its gradient, but in the linearization procedure e is treated as a known quantity. 
Therefore, the eddy viscosity is evaluated from the solution at the previous step or iteration. The 
convergence properties of the iteration procedure and the accuracy of the variable grid scheme have 
been investigated by Blottner.10,  The laminar-to-turbulent flow along a flat plate (turbulence model 
included everywhere except at leading edge) was obtained where the edge Reynolds number, Re a u x/v, 

at the last step is 1.88 x 10s. The solution was obtained with various number of iterations at each 
step and different number of intervals along and across the boundary layer. The grid spacing across 
the layer is specified by Eq. (8-6) with K = 1.82, ANQ - 0.1 and T| - 2U.2538. The wall skin friction 

parameter Cf ■ /2/? (öF/dT|) is used to judge the accuracy and behavior of the results. The accuracy 

of the solution is illustrated in Fig. 6 for various number of intervals across the boundary layer. 
These solutions were obtained with 1? intervals along the flat plate and the skin friction error is 
for the last step. The results presented were obtained with 3 iterations while solutions with only 
one iteration are nearly the same and also have second-order behavior. Also shown in Fig. 6 is the 
accuracy of the Keller box scheme for the same problem. The variable grid scheme approach has about 
the same accuracy in the "redirection as the Keller box scheme for this example. The accuracy of the 
variable grid scheme for various number of intervals in the ^-direction and 80 intervals across the 
boundary layer is illustrated in Fig. 7. With one iteration at each step in §, the method shows 
second-order behavior except when 15 intervals are used. With 19 iterations, second-order behavior is 
obtained for all intervals investigated. However, even with this many iterations the solutions have 
not converged (difference in the dependent variables between successive iterations is greater than 10~e 

at a point half-way across the layer). For the laminar flow case, the solution converges with h  or 5 
iterations. For the turbulent case, the slow convergence is attributed to the lack of complete 
Newton-Raphson linearization. However, the present linearization is adequate and one iteration at 
each %  step is sufficient. 
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The use of several grid spacing relations  (8-2) has been investigated by Blottner104  for turbulent 
boundary layers.    The method of Smith and Cebeci works as well as any of those considered.    An optimal 
node distribution technique has been developed by Denny and Landis10    for two-point boundary-value 
problems.    The grid point locations are adjusted in an iterative process such that the local truncation 
errors of the finite-difference equation are minimized.    This or a similar type procedure might be 
useful to extend to the partial differential equations governing the turbulent boundary layer. 

Another problem that generally does not occur with laminar boundary-layer flows,  is the change in 
thickness of the turbulent boundary layer in the T| coordinate system.    This is illustrated for the 
laminar-to-turbulent flow along a flat plate problem in Fig.  8.    The value of T] at the location where 
F ■ 0.99 is shown at various distances or Re  's along the plate.    Cebeci and Smith lü9 state that for 
Re    ■ 109, the T) at the edge of the boundary layer has a value of 1^0.    Therefore, some method must 
be used to take these large changes in thicknesses into account, 
utilized are discussed in Section 6.2. 

Several approaches that have been 
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Figure $.    laminar and turbulent velocity profiles. 
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Figure 6. Accuracy of skin friction for turbulent boundary layer at 

Re ■ 1.88 x 10 with various number of intervals in T)-direction. 
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Figure 7. Accuracy of skin friction for turbulent boundary layer at 

Re ■ 1.88 x 10 with various number of intervals in ^-direction. 
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Figure 8.    Growth of turbulent boundary layer on a flat plate. 

9.    IHSTEADY BOUNDARY- LAYER FLOWS 

Rather than consider the general three-dimensional, unsteady problem defined by Eqs.  (2-U) to (2-8), 
the present discussion will be limited to the two-dimensional, incompressible boundary-layer equations. 
Since the techniques developed for  steady flows can be extended to the unsteady case,   the numerical 
techniques can readily be demonstrated with these simplified governing equations.    Many of the techniques 
developed for steady compressible, turbulent,  or three-dimensional boundary layers have been applied to 
the unsteady case. 

With Eqs.  (3-1) employed,  d/dx    - 0, w - 0,  P - constant, and J - 0; the governing Eqs.   (2-1*) 
and (2-5) become 

öu/öx ♦ dv/öy - 0 (9-1*) 

du/dt u öu/dx ♦ v du/öy • - (dp/dx)/P ♦ v d2u/öy2 (9-lb) 

The boundary conditions for  the surface and for the outer edge of the boundary layer are 

y - 0 ,    u » v « 0 (9-2a) 

y - « ,    u - u (x,t) (9-2b) e 

If there is no reverse flow, the solution of Eqs. (9-1) can be obtained for various x's with t 
held constant or for various t»s with x held constant. However, to proceed with such a solution, 
initial conditions are required at the initial time, t., for the variables everywhere and at some 
upstream location, xfi, the variables are specified for later times. This is expressed as follows 

where the solution is obtained from position xQ to x^ and from time ti to tf: 
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For t - t±  and xQ * x * xf,   u - u^Xjy) (9-3a) 

For x ' xQ and t. s t s tf,   a - uQ(t,y) (9-3b) 

The velocity v. (x,y) is obtained from the continuity equation, (9-la), while v (t,y) is obtained from 
a compatibility equation which results from eliminating du/dx from the governing equations, (9-1). 
The specification of the initial conditions can be a problem unless a steady, boundary-layer solution 
can be used at t. and an unsteady similar solution at x . For the impulsive motion of a body, the 
boundary-layer thickness is initially zero and a numerical problem is introduced if physical variables 
are used. Some of the transformations employed will be considered subsequently. 

Much of the work on unsteady boundary layers has been concerned with incompressible, two-dimensional 
flows. The initial numerical techniques were applied to the governing equations in physical coordinates. 
The first use of a finite-difference scheme for solving the unsteady boundary-layer equations was made 
by Paskonov and Rabin'kina.ll°    The compressible form of the governing equations were investigated 
where the Crank-Nicolson scheme of Paskonov ° for the steady equations was extended to the unsteady 
equations. The flow variables are assumed known at (n) and are solved for at (n+1) with At ■ tn+l - tn 

and the subscript n indicating the time coordinate location. The derivatives for the momentum equation 
are evaluated at (n+^g, i+^g,j) as follows with a uniform grid: 

öu/öt - (un+1 - un).+1> ./(2At) ♦ (un+1 - un)^ ./(2At) (9-k) 

ou/ox - (ui+1 - u^VCZAx) + (ui+1 - u^/UAx) (9-5) 

2        2 With W representing either öu/öy or d u/öy ,  these derivatives are written as 

where central differences are used to evaluate the ^derivatives as follows: 

(ÖU/Öy)i,j =  (UJ+1 " Uj-l}i/(2Ay) (9_7) 

(ö2u/öy2)^ . =  (u.+1 - 2u.   ♦ u^^/Ay2 (9-8) 

When the above derivatives are substituted in the momentum equation,   (9-lb), the resulting difference 
equation will be of the fonn 

' (-Vo-i * VJ - y^«S - D"L (9-io) 

The coefficient u in the momentum equation,   (9-lb), is evaluated with Eq.   (9-6) where W represents 
u.    Initially,  it is assumed that the coefficient is known which requires that WÜ1**   . be set to w"      .. 

Then an iteration is performed with this term evaluated from the previous iteration.    As the Newton- 
Raphson iteration is not used,  the convergence is probably slow and a second-order accurate scheme is 
difficult to obtain with this approach.    The coefficient v is evaluated at i+*g with the use of the 
continuity equation. 

The continuity equation,   (9-la),   is evaluated at the point (n-^g,  i+ig,   j-^g) with the same approach 
used in the Crank-NicoIson scheme.    The derivatives are written as 

du/dx = r  f(öu/dx)n+1  ♦  (öu/öx)^1 ♦ (öu/ox)" + (cu/ax)" .1 (9-lla) 

where 

(du/S3t)U,j ■ (vi - V> 
and 

öv/öy =  (v. -   v._1)^(2Ay)  ♦  (v.  - vj_1)^(2Ay) (9-llb) 

When these relations are substituted into the continuity equation, the resulting relation can be 
used to determine v?^f. . across the boundary layer after Eq. (9-10) has been solved. An iteration 
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procedure is used to improve the accuracy of  the solution of the momentum and continuity difference 
equations. 

This type of Crank-Nicolson scheme has also been independently developed by Dwyer111 and Hall.113 

In this last paper it is stated that von Neuman's criterion for numerical stability indicates that the 
method is unconditionally stable.    It needs to be added that the velocity u must be positive.    An 
explicit finite-difference scheme was investigated by Farne and Arpaci11    which is an extension of the 
two-dimensional explicit scheme  (Section 5-U.l).    This is a first-order method and the step-size At 
is restricted in size to insure numerical stability.    Oleinik11* proposed this explicit scheme also 
and in addition, she proposed a first-order accurate implicit scheme.    This scheme is an extension of 
the two-dimensional implicit scheme  (Section 5.U.3) and is a first-order accurate method.    The unsteady 
boundary layer at the stagnation point of an infinite plane wall with impulsively started external flow 
was investigated by Katagiri.116    This flow is an unsteady, one-dimensional  (space) problem and was 
solved with the difference-differential method which was described in Section 5«2.    The Keller box 
scheme  (Section 5.U.5) has been extended to the unsteady equations by Phillips and Ackerberg.11S 

Newton-Raphson iterations are used to solve  the nonlinear finite-difference equations, and this method 
is second-order accurate.    The solution procedure with the block tridiagonal method as described in 
Appendix B is not used, but the difference equations are combined such that the modified tridiagonal 
method of Appendix A is used.    This type of modification of the Keller box scheme for steady,  two- 
dimensional flow has been made by Blottner.   '    A change of the box scheme is introduced by Phillips 
and Ackerberg when there is backflow which allows stable solutions to be obtained.    Unsteady flows 
with reverse flow have also been considered by Telionis, Tsahalis and Werle.117    The zig-zag 
derivative introduced by Krause116 for three-dimensional steady boundary layers was used to evaluate 
the following derivative at  (n+^s, i, j) 

du/ox - (u± - u^^/UAx) ♦ (ui+1 - Ui)J/(2Ax) (9-12) 

The other derivatives in the governing equations are evaluated as follows: 

au/*t - (un+1 - un),   ./At (9-13») 

W - (V/1*1 ♦ wV   ,/2 (9-13b) 

where W represents the "H-derivatives which are evaluated with Eqs.   (9-7) and (9-8).    With reverse 
flow, the use of the above procedure requires downstream boundary conditions or one mesh point in the 
x-direction is lost with each step in time. 

Other numerical solution techniques have been applied to the unsteady boundary-layer equations. 
Bartlett, Anderson, and Kendall119 have used the integral matrix method for solving the governing 
equations for a gas in chemical equilibrium with the flow either laminar or turbulent.    Koob and 
Abbott1*° have used the method of weighted residuals and the method of lines to solve the time- 
dependent, two-dimensional incompressible equations. 

The solution of unsteady turbulent flows have been investigated by Patel and Nash1"1 with an 
explicit finite-difference scheme.    This is a modification of a method used previously for steady, 
three-dimensional flows.     Cebeci and Keller1'"' have used the box scheme (Section 5-U.I?) to solve the 
unsteady turbulent flow on an infinite plate which results in a problem with one space dimension. 

The solution of unsteady and three-dimensional boundary-layer flows has been investigated by 
Dwye Two implicit, first-order accurate finite-difference schemes have been used to obtain the 
results.    The significant difficulties encountered in this investigation were the determination of 
the initial conditions and how to handle reverse flow. 

Several types of transformations are used with the unsteady boundary-layer equations.    For impulsive 
flow toward an infinite plane wall, Katagiri introduces the new independent variables. 

T - 2 v/at (9-Uia) 

T\ - y/(2 vCt) (9-lUb) 

where the velocity at the edge of the boundary layer for t > 0 is u    »ax.    At T ■ 0, the transformed 
governing equation becomes an ordinary differential equation in 11 wfiich can be solved to provide the 
initial conditions for the problem.    The physical boundary layer has zero thickness at T - 0, but in the 
transformed plane a finite thickness is obtained.    This procedure gives a result similar to the 
Levy-Lees transformation for the steady flow over a semi-infinite flat plate at the leading edge. 

For the incompressible, two-dimensional boundary-layer equations with an unsteady exterior flow, 
the following type of transformations have been used with the authors indicated: 
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§(x) ■ x 

T](x,y,t) « v/u (x,t)/(2vx)   y Dwyer (9-15) 

§(x,t) = /    u (x,t) dx 
Jo    e 

Tl(x,y,t) =   [ue(x,t)//2l)]y 

T   »   t 

Telionis, et.al. (9-16) 

5(x) = /    u    (x) dx 

Tl(x,y) =  [u    (x)//2f]y 
I   em J 

T - t 

Tsahalia & Telionis124     (9-17) 

Dwyer gives the following reasons for using the transformation (9-15) before the numerical solution: 
(1)    possible leading edge singularities along the plane x = 0 are removed;   (2) equations to determine 
the initial conditions along § a 0 may be obtained by talcing the limit  I -* 0;   (3) the boundary-layer 
thickness is very nearly constant in terms of the transformed coordinate T|; and (U) the derivatives 
of the independent variables are stretched so that high accuracy may be obtained with relatively large 
step-sizes.    The transformation of Telionis,  et.al.   (9-16) was used for calculating transient flows 
while the transformation  (9-17) was used for oscillatory flows.    For the unsteady form of the 
compressible governing equations,   (3-2) to  (3-U)j  Bartlett,  et. al. used a modified Levy-Lees coordinate 
system.    There have been several transformations utilized with the unsteady equations, but there does 
not appear to be any clear choice of the one to use.    Further investigation of the appropriate trans- 
formations to use needs to be performed. 

Although the box scheme is an adequate finite-difference approach for solving the unsteady boundary- 
layer equations,  the Crank-Nicolson scheme as used by Paskonov and Rabin'kina is preferred.    The 
appropriate formulation of this scheme with Newton-Raphson linearization has not been done, but is an 
easy extension of the scheme described in Section 6.1.    Before this is done,  the transformed form of 
the governing equations needs to be decided. 

10.    THREE-DIMENSIONAL BO UND ART-LATER FLOWS 

10.1    Introduction 

Solution techniques for the governing equations,   (2-l|) to (2-11),  for steady flow will be 
considered in this section.    A general method for solving three-dimensional flows is not available. 
At present, a limited number of flow problems have been solved with special techniques for each problem. 
For two-dimensional and axisymmetric boundary-layer flows, very general codes have been developed.    For 
two-dimensional flows these codes are independent of the body geometry while for axisymmetric bodies 
the radius must be specified and for both cases one coordinate system is used.    For three-dimensional 
flows,  there is no unique coordinate system and many different ones have been employed.    With a 
coordinate system chosen,  the geometry of the body or the inviscid streamlines is necessary to determine 
the metric coefficients.    The inviscid flow for three-dimensional flows are not readily available either 
from analytical or numerical results.    These results when available are a function of two independent 
variables and this introduces significantly more complexity than occurs in the two-dimensional case. 

As a result of the difficulties of the solution of the complete three-dimensional problem,  many 
authors have investigated approximate techniques or special cases.    The small crossflow approximation 
of Hayes1"" has been developed by Fannelop126  by means of a systematic perturbation procedure.    Although 
such procedures are important, the present concern is with "exact" solutions of the governing equations 
with numerical  techniques.     The simplest exact solution of the three-dimensional boundary-layer equations 
is the flow at a stagnation point as considered by Howarth.12      The governing equations are reduced to 
ordinary,  differential equations and can be solved with techniques developed for similar solutions. 
There are three special flows that reduce to the two-dimensional or axisymmetric governing equations 
(slightly changed) plus the x -momentum equation where there are only two  independent variables, x,  and 
y.    The first case is the flow over a yawed infinite cylinder where for laminar flow the x -momentum 
equation is uncoupled.    This problem has been investigated by Reshotko and Beckwith1*7 when the external 
flow is of the Falkner-Skan type and the governing equations are reduced to similar form.    For turbulent 
flows, the x--momentum equation is coupled to the two-dimensional equations, and the non-similar 
numerical solution has been obtained by Cebeci. The second example is the flow over a spinning 
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body of revolution at zero incidence.    The governing equations consist of the axisymmetric equations 
which are slightly modified plus the x -momentum equation.    The finite-difference solution of this 
problem for incompressible flow has been obtained by Koh and Price19 while MuracalJO considered the 
compressible case.    The third case is the flow in the plane of symmetry.    Again, a system of governing 
equations   is   obtained which involves two space dimensions.    The solution of these equations has 
generally used exterior flows which give similar solutions.    The flow on a sharp cone at incidence was 
first considered by Moore1,51 and the more recent results are given by Wi and Libby.1^      Nonsimilar 
symmetry-plane solutions with finite-differences have been obtained by Seliverstov1**3 on a spherical 
segment and by Wang13* on a ellipsoid at incidence in incompressible flow.    Another special case is 
the supersonic flow over a cone at incidence where it was shown by MooreIofc   that a similar transformation 
in the x,  direction exists of the form Tl ~y/VxI.    The governing equations become partial differential 
equations involving the independent variables T| and x..    This two-dimensional problem for circular cones 
was solved with a finite-difference scheme initially by Cooke136 and Vvedenskaya137 and later by Dwyer138 

and Boericke.139    The boundary layer on elliptic cones in supersonic flow has been solved numerically 
by Bashkin140 for the case of zero incidence and by McGowan and Davis141  for the case with angle of 
attack.    Although  the foregoing solutions result from simplified forms of the three-dimensional 
equations,  some of these results are a necessary part of the complete solution.    The stagnation point 
and the similar cone solutions provide initial conditions for the complete solution over blunt and 
sharp bodies, respectively.    The plane of symmetry results can be used as boundary conditions. 

The properties of the three-dimensional boundary-layer equations were first investigated by 
Raetz143 where he introduced the "influence principle."    The influence of the solution at any point 
is transferred to other points first by conduction along the straight line paralleling the y-axis and 
passing through that point and then by convection downstream along all streamlines through that line. 
This zone of influence is the region bounded by the body surface and the edge of the boundary layer 
and the outer and inner characteristic envelopes and is illustrated in Fig.  9.    The characteristic 
envelopes are the surfaces normal to the body surface with the outer one containing the inviscid stream- 
line while the inner one contains the surface streamline.    Raetz also states that 1he solution at a 
given point depends only on the solution within another distinct zone, called the "dependence zone." 

ZONE Of INfluENCE 

/ONE Of DEPENDENCE 

BOOV SU«f ACE 

Figure 9.    Region of influence and dependence. 

This zone is formed by the region bounded by the body surface and the edge of the boundary layer,  the 
outer and inner characteristic envelopes passing  through the  solution point and an upstream initial- 
value surface which nowhere coincides with a characteristic envelope.     There must be unidirectional 
flow across the initial-value surface.    Such a zone has the important property:    Appropriate data on 
the initial-value surface and boundary conditions at the body surface and edge of the boundary layer 
determines a unique solution of the three-dimensional boundary-layer equations everywhere within and 
only within the zone of dependence.    The appropriate initial conditions for a compressible gas as 
given by Ting17 are the density profile,  the velocity component u and a third quantity which is a 
combination of the initial profile of  P, u,  v, and w.    The zones of influence and dependence for 
three-dimensional boundary-layer equations have been re-examined by Wang10  from the point of view of 
subcharacteristics which are the streamlines of the flow. 

For the numerical solution of the three-dimensional boundary-layer equations,  the finite-difference 
scheme must take into account the zone of dependence.    The stability of the schemes and where the 
solution can be calculated on a surface with given initial conditions are determined by the zone of 
dependence.    In two-dimensional calculations the zone of dependence is automatically taken into account. 
For three-dimensional solutions the marching direction specification is a function of the problem being 
solved and introduces another complexity to the numerical solution procedure.    The boundary-layer 
solution regions are also limited to flows without separation phenomena.    As used by Eichelbrenner,143 

we call "separated" a region that is inaccessible to the viscous flow coming from infinity upstream. 
He also introduced the term "clash phenomena" to describe the coming together of two boundary layers. 
This phenomena gives a boundary region where the governing equations,   (2-U) to  (2-11), are not valid. 
Again, more complexity results in determining the three-dimensional solution due to separation and 
clash phenomena. 
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10.2 Coordinate Systems 

With the governing equations in terms of an orthogonal coordinate system, the surface 
coordinates must be defined and the metric coefficients determined. The selection of a coordinate 
system in the past has meant a choice which results in a simplification of the governing equations 
and boundary conditions. When numerical solutions are being obtained, this consideration is not 
important. A coordinate system which allows the solution to start from the initial conditions and 
proceed in a logical manner over the surface is more important. Since at present there appears to 
be no superior coordinate system, the types of coordinates used by various authors will be reviewed. 

A coordinate system coinciding with the inviscid streamlines was discussed by Hayesxa and has 
been used mainly for approximate solutions, for example Fannelop.1 E Most authors have used coordinates 
related to the geometry of the surface. The simplest case is Cartesian coordinates where h = h ■ 1, 
and this can be used on developable surfaces (bending a plane without stretching or shrinking). For 
these flows, the boundary conditions at the wall or at the edge of the boundary layer have been used 
to generate the three-dimensional boundary-layer flow. A geodesic coordinate system has been used 
by Moore13" where the metric coefficients are h, ■ 1 and h^ ■ r(x.,x_). For the case of a body of 

revolution, this system is the same as that given by Eq. (3-1) for axisymmetric flows where r ■ r (x,). 
For a conical body, x. is measured along rays from the apex and r(x~ ) is a linear function of x. 

giving the scale change of the noncircular cross section. This is Wie coordinate system used by 
McGowan and Davis14x for conical bodies in supersonic flow at incidence. Moore144 also states that 
the geodesic coordinate system can be formulated in any surface where x, is measured along the surface 

geodesies (line joining two points on the surface to give the shortest distance). The surface contour 
x, • 0 is chosen anywhere except it must be orthogonal to the geodesies and the coordinate system will 

be orthogonal. Wang14b has used an ellipsoidal coordinate system for the three-dimensional flow over 
an ellipsoid at incidence. For the same body at zero incidence, Der and Raetzlb have used as one 
coordinate the line of intersection of the body surface and a meridian plane. The other coordinate 
on the surface are lines perpendicular to the first set of lines of intersection and is illustrated in 
Fig. 10. Der14° indicates that a numerical method of calculating this type of orthogonal coordinate 

Figure 10. Surface coordinate system. 

system on a general body configuration has been developed. This same type of coordinate system has 
been used by Blottner and ELlis14' for blunt bodies at incidence. An improved procedure for finding 
the surface coordinates is given. Rather than the origin at the nose of the body, the origin of the 
coordinate system is located at the stagnation point which allows the solution to proceed away from 
this point in a systematic manner. 

The analysis in this paper has been limited to orthogonal coordinate systems, but this is not 
necessary. Shevelev140 has used a non-orthogonal coordinate system to obtain the incompressible 
boundary-layer flow over an ellipsoid at incidence. The coordinate system employed is similar to 
that illustrated in Fig. 10 with meridional planes about an axis which goes through the stagnation 
point and the center of the ellipsoid. The intersection of these planes with the body surface gives 
one coordinate. The other coordinate is obtained from the intersection of parallel planes with the 
body surface. The parallel planes are perpendicular to the plane of symmetry and are parallel to the 
plane tangent to the body surface at the stagnation point. There does not appear to be any advantage 
to use the non-orthogonal coordinate system for this problem. However, nonorthogonal coordinates would 
be useful if the boundary-layer results are made available in a more natural coordinate system of the 
body being considered. Also, Rizzi, et.al.149 have used a non-orthogonal curvilinear system to 
obtain the supersonic inviscid flow on blunt bodies and it would be beneficial to use the same system 
for the boundary-layer solution. 
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10.3 Transformation of Governing Equations 

In order to have the three-dimensional boundary layer of more uniform thickness in the 
computational coordinates and to obtain ordinary, differential equations at a stagnation line, 
stagnation point, and tip of bodies, a similar transformation of the equations is employed. No 
single approach has been adopted to transform the governing equations; therefore, some of the 
approaches that have been used will be given. 

In order to obtain similar solutions, Fonglb^ introduced the new independent variables 

i ' I    (ou)„ dx, (10-la) 

T] - v/u /(2§) /     P dy (10-lb) 

"> - /   3Wr h3 dx3 (10-lc) 

Two stream functions are used to satisfy the continuity equation.    The governing equations for the 
flow about yawed infinite cylindrical surfaces have been transformed with the Levy-Lees type 
variables by Zemlyanskii.16      The independent variables become 

i - J   (p^)e v^V^ (10~2a) 

Tl -(ueh3//2T)/       P dy (10-2b) 

*> - x (l0-2c) 

and the velocities are written as 

u - u    df/071 » u   F (10-3a) 

w - w    dg/dTl = *   Q (l0-3b) e                    e 

For Cartesian coordinates (h.   ■ h    - 1) the following transformation has been used by Dwyer and 

McCroskey,ilJ"'  Fillo and Burbank,1 3 and Cebeci164  for incompressible flows: 

5 - x, (10-lia) 

Tl -A /(2v|) y (10-lib) 
6 

(i) ■ x3 (10-Uc) 

The factor of 2 in Bq.   (10-Ub) does not appear in the paper of Cebeci while the same new Independent 
variables with 2 in the numerator have been used by Blottner and Ellis1*7 for blunt body incompressible 
flows.    Dwyer and McCroskey introduce the new dependent variables 

F - u/ue (10-5a) 

V - vvxTC^T) ♦ F(ß§ - l)/2 ♦ (w/ue) Tl 0a/2 (1Q,$b) 

where 

S e        e 

ßu» " (§/V ^e7^ 

The resulting governing equations are second-order partial differential equations.    In the work of 
Fillo and Burbank, and Cebeci,   two stream functions are introduced to  satisfy the continuity 
equation which gives 
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u - d*t/oy (lO-6a) 

where 

♦ - ÄÖTf   (§,Tl,«u) 

v - - W**! - &p/öx3 

w ■  äcp/öy 

(lO-6b) 

(10-6c) 

(lO-7a) 

cp « Wä/2VX7\T g(§,Tl,«)) e e 
(10-7b) 

This approach has been used previously by Moore   for the compressible, three-dimensional boundary- 
layer equations. Fillo and Burbank introduce F ■ df/dT] - u/u and G ■ dg/dT| ■ w/w which makes the 

governing equations second-order while Cebeci uses f and g as the independent variables and has third- 
order equations. The approach of Fillo and Burbank is the same as that used by Fannelop for the two- 
dimensional equations (see Section 5«U«U). For the blunt body solutions of Blottner and Ellis, the 
new dependent variables are the following: 

u/u (10-8a) 

w/W (10-8b) 

V - \ §[vv£7u^f ♦ (F/^) W^ * (WeG/ueh3) öVöx3] (10-8c) 

where W   is a reference velocity which can be w    or u .    The resulting governing equations in this case 
are secSnd order. e 

For the compressible flow on sharp cones at incidence, and with and without spin; Dwyer1^" and 
Watkins166 have used nearly the same new independent variables.    The method of Watkins is  presented 
and it is appropriate for any sharp body of revolution.    The metric coefficients are h..  - 1 and 
h- ■ r.   and the new variables are 

3       b 

5 «jT «H i dx, 

T| -yue/(2S) rbj    P dy 

(10-9a) 

(10-9b) 

(10-0c) 

The new dependent variables are 

F 

Q 

6 

u/u 

w/u 
G 

T/T 

(10-10a) 

(10-10b) 

(10-10c) 

V - y2§7u~e Pv/[rb(P^] + 2? [F rb dV^ ♦ Q oVo^Mr^P^] (10-10d) 

The governing equations are of second-order and are a more general form of the two-dimensional 
equation given in Bqs.   (3-8).    Vatsa and Davislbb  have used Levy-Lees variables for  the compressible 
flow on a sphere-cone at incidence and with geodesic coordinates.    The solution is restricted to the 
downstream region of the body.    The new independent variables are 

?-*l 

vy^*/3 P dy 

(10-11a) 

(10-llb) 

(10-llc) 
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where 

0 J-       e e e 3 

The new dependent variables are introduced as follows: 

F - u/u 

G ■ w/w 
6 

e - T/Te 

and a velocity-like term V is defined which satisfies the continuity equation. 

The three-dimensional boundary-layer equations have also been transformed with the Crocco 
variables by McGowan and Davis,141 Mayne,16    and Popinski and Davis.16      Another type of transforma- 
tion has been used by Dar and Raetz16 and Vfersi    ~ where the normal  coordinate y is replaced with 
T) • yi - F   and a shear coefficient is introduced as an unknown. 

10.h   Inviscld Flow 

One of the major problems with solving the three-dimensional boundary-layer equations is 
the determination of the inviscid flow.    The purpose of this section is to indicate the problems that 
have been solved and what information was used for the inviscid flow.    The following three-dimensional 
flows have been investigated: 

1. Ellipsoid at Incidence - For incompressible flow the potential flow solution is used. 
(Shevelev/"   Blottner and Ellis,    7 and Vfeng14b ) 

2. Flat Plate with Attached Cylinder - The incompressible flow around the cylinder is 
obtained from potential theory.    (Dwyer,1*0 Fillo and Bur-bank,160 and Cebeci164) 

3. Parabolic Flow over a Flat Plate - The inviscid velocities are specified and for 
incompressible flow the governing equations reduce to a similar solution.    This 
inviscid flow has been used to investigate the influence of a wall hot spot on 
the three-dimensional flow (Krause and Hirschel1*1). 

U.    Jet Against a Wall - The inviscid flow for this problem is obtained from potential 
flow theory for two impinging jets.     (East and Pierce*   "  and Cebeci164) 

5-    Rotating Blades - An extension of a result of  Sears which relates the steady 
potential flow past a nonlifting blade in a uniform,  two-dimensional stream to the 
desired flow is used.     (Dwyer and McCroskey15^) 

6. Conical Flow - The inviscid flow over circular cones at incidence has been obtained 
numerically by several authors and these results are used for the inviscid flow on 
spinning cones.    These solutions are only a function of x, and can be used in 

tabulated or curve fit form,    usually the pressure  is taken from the numerical 
solution and the remaining edge properties are obtained from the inviscid flow 
equations.    (Watkins165 and Dwyer and Sanders16"3)    The effect of the swallowing 
of the inviscid flow has also been taken into account on circular cones.   (Mayne167 

and Popinski-Da vis168) 

7. Blunt Bodies - Several solutions have been obtained for the supersonic and hypersonic 
flow over blunt bodies.    A Newtonian type of pressure distribution has been used to 
generate the inviscid flow conditions on a sphere-cone.    (Der146)    The other inviscid 
flows have been obtained from numerical solutions and the configurations that have been 
considered are sphere-cones, ellipsoid, and segmental body  (sphere-reverse cone) at 
incidence.    Curve fit relations have been used to represent the complete numerical 
data in some cases   (Andreev and Shevelev104) while in other papers only the pressure 
is treated in this manner with the other inviscid flow conditions calculated. 
(Vvedenskaya,16"   Shevelev,16"5  Vatsa-Davis,155 and Popinski-Davis168 ) 

8. Flow over Sphere with Interference - The inviscid flow for this problem was obtained 
from experimental measurements.     (Karabelas and Hanratty167) 

The approximate techniques for solving three-dimensional boundary-layer flows of 
Fannelop1<i&  and DeJarnette and Hamilton160 have generated procedures for obtaining 
the inviscid flow and this work should be considered as a possible approach.    Also, 
there have been no direct finite-difference solutions of the inviscid surface equations, 
(2-11*), where the pressure is specified and is obtained from a complete numerical 
solution. 

There appears to be considerable difficulties with handling the inviscid flow data 
and problems are encountered with obtaining smooth distributions of the flow quantities. 
The swallowing of the inviscid flow on blunt bodies has not been investigated and this 
phenomena introduces a significantly more complex data handling problem than the case 
with constant entropy on the body. 
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10.5    Finite-Difference Methods 

There have been various schemes proposed for solving the three-dimensional steady boundary- 
layer equations,   (2-I4) to  (2-8).    Both explicit and implicit methods have been used and these methods 
are stable for two-dimensional flows.    However, for three-dimensional flows there are restrictions 
on the allowable step-sizes to maintain numerical stability as pointed out by Krause,  et.al.19      Since 
the three-dimensional boundary layer has zones of influence and dependence,  the numerical scheme must 
take these into account.    Krause,  et.al. have shown that the following stability parameter v must 
satisfy certain inequalities: 

(h, Ax^/O^ u Ax3) (10-12) 

The restrictions on y will be indicated for the various schemes which will show that many schemes are 
unstable with a reverse crossflow.    The other interesting property of the various schemes is the 
initial and boundary conditions which are required to continue the   solution downstream without 
dropping grid points. 

The governing equations for momentum and energy conservation in either physical or transformed 
coordinates contain first derivatives in the three coordinate directions and second derivatives only 
in the direction normal to the surface.    Rather than writing all the difference relations for each 
scheme,  sketches will be used to illustrate the various methods.     The grid system and notation 
employed is given in Fig. 11, where the y-coordinate is coming out of the paper and all grid points 
shown are at the location  (j).    The unknown grid points in all cases are at the location  (i,k). 

-• •— I- 1 

-*— k 

i-2 i-l 

• KNOWN POINTS 

• UNKNOWN POINTS 

V DERIVATIVES 

-—^ *, AN0«j  «*IVATIVES 

 NECESSARY    I INITIAL ANO 

  DESIRABLE     I BOUNDARY CONDITIONS 

Figure 11.    Grid System and Notation. 

The y-derivatives are evaluated with central differences as follows unless indicated otherwise: 

(10-13) (ÖW/Öy)i,j,k - (V " V>i.k/(2A,r) 

JL^JL <*w/* W • (Vi - 2Wj+ w* (10-lli) 

The first derivatives in the x,  and x   directions are evaluated with the points at the arrowheads. 
For the illustrated case in Fig.  11, "Chese derivatives are 

wVi-i,o,k • <wi - v2
)
Jy

(2tei> (10-15) 

(dw/Vi-i,j,k - (Vi - wk-i>i-i,/(2AV (10-16) 

The location of necessary initial and boundary conditions required for each method will be shown with 
a dashed line. If the desirable boundary conditions, which are indicated with the dotted line, are 
not available, then a grid point is dropped as the calculation proceeds in the x, -direction. 

If the continuity equation has been retained as one of the governing equations, then it needs 
to be handled differently than the other conservation equations. The continuity equation in either 
the physical or transformed coordinates contains only first derivatives in the three coordinate 
directions and these derivatives are evaluated as follows: 

(aw/dy)i,^,k ■ (wj - Vi V* (10-17a) 
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öw/a^ - bw/öx1)j ♦ (awAVj-i/2 

dW/dx, \(W^ (bW*x^)yl \/2 

(10-I7b) 

(10-I7c) 

The y-derivative is evaluated at the  (i,k) points as indicated by the circle in the sketches for the 
various schemes.    The first derivatives in the x-,  and x, directions in Eqs.   (10-17) are evaluated 
with the (i,k) points shown by the arrows in the sketches. 

The finite-difference schemes are grouped according to the type of solution procedure used to 
solve the resulting difference equations.    The three groups that result are explicit, implicit, and 
cube scheme which are now described. 

10.5.1    Explicit - An extension of the two-dimensional DuFort-Frankel scheme, which was 
described in Section.5«U-2, has been applied to the three-dimensional equations by Der and Raetzlfc 

and Bast and Pierce16" but these schemes are different.    The second derivative in these schemes is 
handled in a special manner and is written as 

(ö2W/öy2) i-l,j,k 
(W 

0+1 Vl*i-1 "   (Wi Wi-2>J 
Itf (10-18) 

The two variations are shown in Fig. 12. For the Der and Raetz scheme, two forms of the initial 
data can be used. One case is shown with the heavy dashed lines and the other with the light dashed 
lines. For the second case, information is required at the two levels (i-l) and (i-2) and thus a 

um 
DER  AND RAETZ EAST AM) PIERCE 

Figure 12.    Explicit schemes. 

starting procedure is required for this method.    The same is true for the East and Pierce scheme.    The 
authors imply that these methods are stable, but no stability analysis has been performed.    One would 
guess for the Der and Raetz scheme that the condition required is -1 £ V * 1 while for the East and 
Pierce scheme the condition is 0 £ Y * °°.    This indicates that the Der and Raetz scheme can be stable 
for a reverse crossflow while the East and Pierce scheme would be unstable.    For both of these methods 
the only unknown in the difference equations are quantities at the one grid point  (i,j,k) which can be 
solved explicitly.    The Der and Raetz scheme is a second-order method while the East and Pierce scheme 
is first order. 

10.5.2    Implicit - These schemes are related to the implicit and Crank-Nicolson schemes for 
two-dimensional flows.    The implicit methods result in difference equations with the unknown dependent 
variables appearing at the three grid points, j+1, j, and j-1, with the other locations for  the points 
being (i) and (k).    The various schemes that have been proposed and the restrictions on Y are presented 
in Fig. 13.    The derivatives^are evaluated as the notation in Fig.  11 indicates.    The evaluation of the 
x--derivative in the Krause1"" zig-zag scheme is special and is written as 

(dW/dx3U,J,k "  |<Vl " Vi-l,j + (Wk " V^-l)i,j|/(2ÄX3) (10-19) 

The results for the stability parameter are taken from Krause, et.al.169 and Dwyer and Sanders.16 

Although no stability analysis has been performed for the Shevelevi4b  scheme, one would expect the 
requirement to be 0 s 7 s ".    Shevelev indicated that a Crank-Nicolson scheme should be used and 
Dwyer1so also utilized the same type of scheme where the y-derivatives are evaluated at the four 
corners of the box.    Krause1 e pointed out that the y-derivatives only have to be evaluated at the 
two corners as shown in Fig. 13.    All of these schemes become unstable if there is a reverse cross- 
flow.    The methods shown in the lower part of Fig. 13 are stable with reverse crossflow if the  step- 
sizes satisfy the   stability parameter restriction.    The method of Hall170 requires two levels of 
initial data to start the solution unless initial data are specified along the heavy dashed lines. 
The Krause139 zig-zag scheme requires initial and boundary conditions along the two perpendicular 
directions as shown in Fig. 13.    The Shevelev,  Shevelev-Dwyer, and Krause  (1969) schemes require the 
same type of initial and boundary conditions.    The Dwyer-Sanders163 scheme is the only method which 
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Figure 13.    Implicit schemes. 

can calculate the solution downstream from a plane of initial data.    If additional boundary conditions 
are not given as shown in Pig.  13, then grid points are dropped as the solution proceeds.    This also 
occurs with the Hall and Krause  (1968) schemes.    All of these methods can be second-order accurate 
except the Shevelev and Dwyer-Sanders schemes which are first order.    Blottner and Ellis1*7  suggested 
that a two-step Lax-Wendroff scheme might be adopted to the advection terms to give a second-order 
method when starting with initial data on a plane. 

Since the finite-difference equations for the three-dimensional boundary layer are nonlinear,  a 
linearization is performed.    The resulting equations are uncoupled and of the form of Eq.   (5-19) 
which are solved with the method of Appendix B.     The continuity equation is of special form and gives 
an explicit solution for v (or related quantity) in terms of the  other dependent variables.    As 
shown for the two-dimensional boundary layer in Section 6, this type of linearization and iteration 
converges very slowly.    This appears  to be the reason that Blottner and Ellis1*7 did not obtain 
second-order accurate results as an insufficient number of iterations were performed.    The coupling 
of the difference equations with complete Newton-Raphson linearization has not been performed.    The 
resulting difference equations will require the block-tridiagonal procedure of Appendix B.    The blocks 
will be 3 x 3 for the incompressible boundary-layer equations while h x h for the compressible case if 
the energy equation is coupled. 

10.5.3    Cube Scheme - This method is an extension of the box scheme for two-dimensional 
flow described in Section 5.U-5.    The governing equations are written as a  system of first-order 
equations  before ttiey are written in finite-difference form.    This scheme is similar to  that of 
Shevelev and Dwyer which is illustrated in Fig.  13.    Since the equations are first-order, the y- 
derlvatives at the corners are evaluated as follows: 

(aw/Sy)i,j-%,k ■ (WJ - Vi>iy* (io-2o> 

Also, the first-order derivatives in the x_  and x    directions are averaged between the values at 
(j) and (j-1) as follows: 1 i 

(ÖW/öx1)j_^=    (oW/dx^  + (aw/fc^j.! \/2 

W*x3)jJg (dW/dx^j  * (öW/dx3)>;L|/ 

(10-21a) 

(l0-21b) 

The evaluation of the x,  and x. derivatives are then obtained as the arrows indicate in Fig.  13 
for the Shevelev and Dwyer scheme.    This metiiod is second-order accurate and Newton-Raphson 
linearization has been used.     Therefore, converged solutions should be obtained after a few 
iterations.    This method uses the block-tridiagonal procedure of Appendix 3 for the  solution of 
the difference equations and for incompressible flow the block are 6x6.    The stability of this 
method has not been stated, but it should be unstable  for reverse crossflow. 

10.6    Solutions and Limitations 

The previous discussion has indicated the type of three-dimensional boundary layers that 
have been solved.     These results generally require the finite-difference solution of three separate 
problems as follows: 
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(1) Tip,  Stagnation Point or Leading Edge -  The governing equations are a function of the 
transformed normal  coordinate and x .    A two-dimensional finite-difference scheme is required and 
the solution is started where the crossflow zero is zero. 

(2) Plane of Symmetry - The governing equations are a function of the normal coordinate 
and x. -    A two-dimensional,  finite-difference scheme is required and the solution is started at the 
leading edge, tip, or stagnation point. 

(3) Three-Dimensional Flow - Depending on the initial and boundary conditions available, 
one of the three-dimensional,  finite-difference schemes of Section 10.5 is employed. 

If a code is to have any general use,   there must be several of the schemes included in 
order that a stable solution may be obtained and allow the solution to continue depending on the local 
initial and boundary condition available.    Flexibility of the use of various schemes and choice of 
where the solutions are performed is required.    When regions of separated flow or clash lines are 
encountered, the marching procedure must be such that these regions can be excluded or taken into 
account properly.    The automations of these choices would be very desirable. 

Most of the three-dimensional solutions have been for laminar flows,  but the extension 
to turbulent flows does not appear to add any new difficulties not already encountered with two- 
dimensional flows.    Turbulent solutions have been obtained by East and Pierce,16*  Cebeci,164 and 
Harris and Morris.171 

The extension of the three-dimensional numerical techniques to unsteady flows has only 
been performed by Dwyer.1^"3    There appears to be no new problems introduced unless flow reversals 
occur. 

11.    STATUS OF BOUNDARY-LAYER COMPUTATIONAL TECHNIQUES 

Although significant progress has been made in developing numerical techniques for solving the 
boundary-layer equations,  there is the need for  more efficient procedures.     When one is confronted with 
the task of solving a three-dimensional flow, a complex reacting gas flow, or a turbulent flow with 
complex governing equations; prohibitive computing times can occur.    In the earlier work on solution 
techniques,  the main concern was developing a procedure which was stable and provided reasonably 
accurate results when needed.    Recently, the interest has been in obtaining more accurate procedures 
and solving the more complex flows. 

Adequate second-order accurate, finite-difference schemes exist for solving two-dimensional 
and axisymmetric perfect gas flows.     The method of weighted residuals and the matrix integral method 
need to be investigated and the accuracy assessed.    Also, higher-order,  finite-difference schemes 
need further study.    For solutions with the same accuracy, the computer time required for the various 
schemes needs to be evaluated.     Hopefully, a better idea can be obtained on when higher-order schemes 
should be used and which methods should be pursued in the future.    Automatic techniques should be 
developed for keeping the error within certain bounds by changing step-sizes and the order of the 
method.    For turbulent flows, there is a need to find better ways to specify the grid spacing such 
that accurate results are obtained with the minimum number of grid points.    As more efficient techniques 
are developed for the two-dimensional boundary-layer equations,  they can be utilized in the solution 
procedures for unsteady,  three-dimensional or real gas flows. 

For unsteady, two-dimensional boundary-layer flows,  there has  been a limited amount of work 
performed.    The two-dimensional techniques have been extended to the unsteady case, and three- 
dimensional steady schemes have been utilized when there is reverse flow.    If there is reverse flow, 
further study is needed to determine the validity of the use of the boundary-layer equations. 
Additional work on the appropriate transformation to use with the unsteady boundary-layer equations 
is needed. 

For steady,  three-dimensional flows, difference schemes have been developed for various initial 
and boundary conditions and a limited number of problems have been solved.    One problem appears to be 
the development of a general code for solving a variety of three-dimensional flows.     This requires 
further evaluation of coordinate systems, transformations, and more accurate and better ways of 
handling the inviscid flow data needed.    Also, more flexibility needs to be added into the codes 
such that the various difference schemes can be used as needed to satisfy the zones of dependence. 
The interaction of the boundary layer with the inviscid flow is a difficult problem that has only 
been handled for the  sharp cone at incidence.    One of the significant problems is knowing when or 
where to utilize the boundary-layer approach for a problem.    For boundary-layer flows with boundary 
regions and significant interaction with the inviscid flow, perhaps the parabolic approach or the 
complete Navier-Stokes equations should be used for these flow situations. 
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APPENDIX A 

SOLUTION OF MODIFIED TRIDIAGONAL EQUATIONS 

A method is presented for solving the following coupled, finite-difference equations 

These equations are a particular form of the block-tridiagonal equations and a special form of the 
solution procedure of Appendix B. 

The following parameters are first determined: 

Ej-0 

G    - 0   \ Obtained with boundary conditions at outer edge 

v h-°j(cjVi-aj)]/a 

e
j ■ K * (CJVI ■ aj) dJ * CjVi|/a 

where 

Then the solution is obtained from 

Fx-0 

71 -  0 

Boundary conditions at wall 

F. - E.F. .   + G.V        + e. 
J        3 3-1        3 j-1        3 

VVl-C3(Wl)+d3 

j - 2,3,U,---J 
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APPENDIX B 

SOLUTION OF TRIDIAOONAL AND BLOCK-TRIDIAGONAL EQUATIONS 

Finite-difference relations of the form of Eqs.   (I4-I8) are solved efficiently with the procedure 
we will describe.    For tridiagonal equations, all of the quantities in Eqs.   (J4-IÖ) are scalars while 
for block-tridiagonal equations the quantities are matrices and vectors.    The Gaussian elimination 
process given below has been called the Thomas17<d algorithm and apparently was discovered independently 
by many others.    For additional details of the block-triangular decomposition see,  for example, 
Isaacson and Keller173 and for explicit relations for blocks up to 3 x 3 see von Rosenberg. 74    A 
comparison of the block-tridiagonal factorization method with the band matrix method has been made by 

h.17B 

The solution is started by first determining the following quantities: 

h ■ Bl\ 

8i ■ \\ 

The solution is then completed with the use of the following relations: 

WJ " (BJ " AJEJ-I)_1 (DJ + VJ-I) 6J 

Wj  - EJWJ^  ♦ Bj       j  -  (J -  1),   (J -  2),..-2,1 

If the boundary conditions for the tridiagonal equations are 

W,-l 

then 

8,-1 

Cl"° >       E^  - 0 

\-\    J 8,    •   W 
1        w 

Aj ■ 0 

"j"1   >  'J'1 

»J*1 

For the block-tridiagonal equation, the boundary conditions give the above terras and are matrices 
as shown in  Eqa.   (U-18). 

Greater efficiency is attained in this solution procedure for the block-tridiagonal case if the 
equation for E, and e. are solved with Gaussian elimination rather than with the use of the inverse 
matrix. J J 
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I.  The Cauchy problem for partial differential equations. 

I.1.   Notations and examples 

In this chapter ve consider the Cauchy problem for partial differential equations.  Let x = (x   ,...,x   ) 
-L S 

denote a point in the real s dimensional Euclidean space R  and let  t  denote the time. Then we con- 
s 

sider systems 

(1.1) 3u/3t  = P(x,t,3/3x)u       ,      x£R       ,    t >_ tr 
S v. 

for which at time    t  * tQ    initial values 

(1.2) 

are given. Here 

u(x,t0) « f(x)       ,      x£ Rs 

are vector  functions,  depending on    x    and    t   . 

P(x,t,3/3x)     is a general differential operator of order    m   ,  i.e., 

m I   I v 
(1.3) P(x,t,3/3x) »    [    P.(x,t,3/3x)     ,    P. • Y      A  (x,t )3'V| /3x.   \.. 

J-0    J J |vT-j 

where    A (x,t)    are    n*n    matrices and    v    denotes the multi-index 

3x 

(l.M v » (v.,...,v )   ,  v.  natural number,   |v| * £v. . 

Now we consider a nunber of examples. 

(l) The most simple initial value problem is 

(1-5) 3u/3t » c3u/3x   ,  u(x,0) = f(x) , 
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where c is a constant. Its solution is given by 

(1.6)     u(x,t) = f(x+ct) , 

i.e., the solution is constant along the characteristic lines x+ct * const. Another way to obtain the 

solution of (1.5) is by Fourier transform. Let f(x) £ L2(-«,<») then we can represent f(x) in the form 

(1.7) f(x) = (2*rl/2 J eiwX f(M)d- , f(«) = (2n)-1/2 T^"*  f(x)dx . 
_oo —<r> 

Assume that also the solution can be represented by a Fourier integral 

. +00 

(1.8) u(x,t) - (2TT)"1/2 / e1WX u(w,t)dft) . 

Then we get  from  (1.5) and (1.7) formally 
+00 

0 * 3u/3t  - c3u/3x = (2TT)"
1/2

    / e1WX(3u/3t  - iü>cu)du> , 

0 = u(x,0)  - f(x) = (27r)"1/2    / ela,X(u(u),0)  - f(u>))du> , 

i.e., 

3u(w,t)/3t  = iwcu(u),t)       ,       u(u,0)  = f(<u) 

and therefore 

u(03,t)  -eiuCt  *(<-)   . 

Thus by  (1.8) 

(1.9) u(x,t)  » (2TT)-
1/2

 7 eiü,(x+Ct)  f(u>)du, * f(x+ct)   . 
_ r., 

(2) Another example is the wave equation 

(1.10) 32u/3t2 = 32u/3x2 . 

In this case we have to specify u and 3u/3t as initial conditions for t * 0 , i.e., 

(1.11) u(x,0) = f(x)   ,  3u(x,0)/3t = g(x) . 

We write (l.lO) as a first order system.  Let    v(x,t)    be a function such that 

(1.12) 3u/3t  = 3v/3x       ,       3v/3t  = 3u/3x  . 

Differentiating the first equation with respect to t and the second with respect to x and eliminating 

v , shows that u is a solution of (1.10). u fulfills also the initial conditions (l.ll) if we specify 

v(x,0)     in such a way that 

3u/3t|tsQ = 3v(x,0)/3x * g(x)   . 

(1.12) can also be written in matrix form 

(1.13) 3w/3t » A3w/3x  ,  A=(° j)  ,  w«(*J. 

A is a symmetric matrix. Therefore there is an orthogonal matrix 0 such that 

(l.lU)     0 A 0 •-"H1 0 
where \.    are the eigenvalues of A . In this case 

J 

(1.15)   x1 = n  .  x2 = -i  , o.-i _J +i  . 
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Introduce therefore new dependent variables by 

y *      y = Ow . 

Then 

(1.16) 3y/3t  ■   I )3y/3x c: :> 
and we get two scalar equations of type  (1.5) which can be  solved explicitly. 

(3)    A third example is given by the so-called heat  equation. 

2 2 3u/3t  » ad u/3x ,       a » const.   >  0  , 

u(x,0) -  f(x)     . 

Its solution can be easily computed by Fourier transform. 

(U)    In large scale calculations the underlying partial differential equations are much more compli- 

cated.  As an example we state the linearized shallow water equations. 

U0    °    *0 

4- v    I - I    0       U     0       \± wo 

1     o   u0 

vo   0     0 

0    v0   1 3y |   •     "0 

o    i    v0< 

Here    u,  v    denote velocities in the    x, y    direction respectively and    0    represents the potential. 

U   , V   ,  0      are mean values which can be functions of    x, t   . 

Other examples are  furnished by the equations of Gas dynamics, Maxwell's equations and the equations 

governing magneto hydrodynamics. 

I. 2.   Well posed problems 

The solutions of problems defined by  (l.l),  (1.2)  are not  always well behaved.  Consider for example 

the equation 

(2.1) 3u/3t  » -32u/3x2 

with initial value 

(2.2) u(x,0)  » f(x) 

where the Fourier transform £(ui) of f(x) has compact support, i.e., 

(2.3) f(x) « (27t)-1/2 / eiuX f(u.)du,  . 
-N 

The solution of this problem  is obviously given by 

u(x,t) -  (2ir)-1/2    / eiü)X+t°2t  f(»)d*    . 
-N 

Thus by making R large enough we can construct solutions which grow arbitrarily fast exponentially. This 

is often referred to as exponential explosion. Of course this explosion does not occur if f(u) decays 



4-4 

3 
sufficiently fast,  for example if     |f(w)|  < const,   e .  This assumption is in most  cases too restrictive 

because the initial data are often given by measurements and therefore prone to spurious disturbances. The 

only reasonable assumption one can make is, that there is a constant    p ^ 0    such that 

(2.1*) |f(u>)|   < const.   ( IwlP+l)"1   , 

i.e., that the Fourier  transform of the initial values decays polynomial.  This can never prevent  any expo- 

nential explosion. 

Consider the differential equation (1.5).   Its solution is given by (1.9)«  Therefore,  if 

|f(u)| £ const.   (|üJ|   + l)~p    then the same is true for    u(x,t),  i.e.,     |u(w,t)| _< const.   (|w|   + l)~P. Thus 

there is no exponential or polynomial growth of the solution's Fourier transfoim.   In fact we get  from 

Parseval's relation for every fixed    t   : 

J|u(x,t)|2dx =    /   |f(x)|2dx. 
—OD _00 

An example of polynomial growth is given by the differential equation 

(2.5) 8tW = U J 3x w ■ U*,o)/ = v(2)(x)J • 
Its Fourier transform is 

Therefore 

i.e., 

d/u\ A       l\    /u\ /uU,0)\ /fMM\ 

norio ijU/ ■ U-o>) =U2w 

u(üJ,t)   =eiwt   f(l)U)  +iWteiu,t   f(2)(u>)     , 

v(»,t)  =eiut   f(2)(co)     , 

u(x,t)  =  (2,rrl/2 7 eiw(x+t)(f(l)(U)  ♦  iu,tf(2) (u>) )du>       , 

v(x,t)  =  (2*rl/27eia,(x+t)   f(a)(«)d«     . 
—00 

Observing that 

/ |3f/3x|2dx = / u
2|f(u))|2dx 

—00 —00 

we get  instead of (2.5) 

7|u(x,t)|2+  |v(x,t)|2dx < 7|fU)(x)|2+   |f(2)(x)|2dx 
—00 _oo 

Thus polynomial growth of the Fourier transform corresponds to the loss of derivatives. 

We shall now define what a well posed problem is. Let L9(RQ) be the space of all quadratically inte 

grable vector functions u = (u  ,...,u  )'  and denote by 
2V s' 

(2.5)      (u,v) = I    J ü(i)v(i)dx  ,   ||u|| = |(u,u)1/2| 
R 
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the usual scalar product and norm.  We define: 

Definition 2.1.  Consider the Cauchy problem (l.l),  (1.2).   It   is weakly well posed if for every    f£c 

(r    some number) and every initial time    t = tQ   there is a unique classical solution    u(x,t)   ,  (i.e.,  a 

solution which belongs to    (f1    as function of    x    and    C      as function of    t) with: 

(2.6) ||u(x,t)||   < K eat't() y       ||3|a|f/8a||       . 
|a|<p 

It is strongly well posed if (2.6) holds with p * 0. Here K, a, p are constants independent of f and 

1.3. Equations with constant coefficients 

In this section we consider systems (3«l) 

3u/3t = P(3/3x)u 

(3.1) 

u(x,0) - f(x) 

with constant  coefficients.   Let    ui *  (w, .....u  )    denote the  (real) dual variables of    x =  (x, ,...,x   ) Is is 
and denote by 

a» s 

(3.2) fU)  =  (2n)-1/2    / e"^'*)   f(x)dx       ,     <u,,x>   =    J    u>.x. 
-a, i«l       1    X 

A 

the Fourier transform of    f(x)   .  We assume that  for every    f   there is a constant    R*    such that 

(3.3) |f(w)|  = 0      for       |cü|   > R*     . 

Then it follows that (3.1) has a unique solution belonging to Lp for every fixed t which is of the 

form 

(3.U)     u(x,t) » (2it)"l/2 / e1**»*) u(w,t)dw « 

- (20"1/2   /  .^^ttU.t)««  . 

Introducing (3.1*)  into (3.1) gives us 

^%^ - P(iu>)u       ,       u(tt,0)  - fU)     , 

where 

m v v 
P(iw) =    I    P.(iw)       ,      P.(iw)  =      I      A  (iw  )  A  ...   (iu   ) 

j-0    J J |v|-j 

Therefore 

Urn*) • ep(iu)t Urn) 

and 

(3.5) u(x,t)  - (2,rrs/2        /      e1 U'X    eP(iw)t  fU)d« 
W\±*r 

is the solution of our problem. 

We can now prove 

Lemma 3.1.    The Cauchy problem (3«l)  is weakly well posed if and only if there are constants    K,    a,    p 
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such that 

(3.6) |eP(iu,t|  < K|co|Peat     . 

Especially if (3.6) holds with    p = 0    then the problem is strongly well posed. 

Proof;    From (3.5) and Parseval's relation we get  for every fixed    t 

(3.7) ||u(x,t)||2 =        /      |eP(iu,t|2 |fU)|2d-      . 
I«frf 

If (3.6) holds, then (3.7) implies 

||u(x,t)||2< K2 e^  7 W2* |f(u»)|2du)< K2 e2**   ||f||2  . 

Assume now that there are no constants K, a , p such that (3.6) holds. Then there exist for every 

triple of constants K, a , p an  u>_, t  such that 

P(iwn)tn at 
|e   ° °| > 2K \„Q\*  e °  . 

Therefore there is a whole neighborhood of    w  ',  such that 

P(iw)tn ott 
(3.8) |e °|   > K|o)|P e    °      for       IM-UJ  <  5     . 

Let us choose    f(x)    in such a way that 

f(w)  ■ 0      for       |ti>—to   |   >  6 

Then by (3-7)    and  (3.8) 

||«<*,t)||2 >«*.** ||r||2  . 

This proves the lemma. 

From the last lemma we get 

Theorem 3»1. The Cauchy problem (3.1) is weakly well posed if and only if there is a constant a such 

that for all w for the eigenvalues A of P(iu) the estimate 

(3.9) Real X £ a 

holds. 

Proof:  Let  A be an eigenvalue of P(iu) . Then 

,P(iu>)t. > e(Real X)t 

Therefore (3.9) is a necessary condition. 

Assume now (3.9) holds, e      is the general solution of the system of ordinary differential 

equations 

dy/dt » P(iu)y 

Let U « U(iu) be a unitary matrix which transforms P(iw) to upper triangular form, i.e., 
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UPU - A + Q  ,  A 

0 

.  0 

il2 

and introduce new variables 

v = Uy 

v is the solution of 

dv/dt « (A+Q)v 

Let 

At 
v = e v 

then    w    is the solution of 

dw/dt » Q v 
-At       At 

e      Q e 

*23 

Here 

i.e. 

(3.10) 

Ql 
is of the  same form as    Q  .  Therefore 

w(t) 
v=0 

-At v     At 

v=0 

U*v = U*    I    QV tv eAt  = eP(iw)t 

v=0 

The theorem follows from the observation that  |Q| <_ const. |w|  ,  |e  | <_ e 

We thus see that algebraic conditions to decide whether a Cauchy problem is weakly well posed are 

relatively simple. This is not so for strongly well posed problems. Without proof we shall here state 

Theorem 3.2. The Cauchy problem (3.l) is strongly well posed if and only if there are constants K , K , 

a and for every w a nonsingular transformation T  ■ r(w) with 

-1, 
max{|r(u>)      ,  |r~xU)|} < E 

C\ 
r(ü))p(iu)r'1(ü)) 

*12 

*23 

V   o    .    . 

<ln\ 

*2n 

v 
where 

Real    A     < Real  X    <   ...   <  Real  \    < a 
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and 

k- -I 1 K (|Real X.| ♦ l) 

We shall now consider a large number of examples. 

(l) Hyperbolic systems.  Consider a first order system 

3u/3t = I A 3u/3x 
*■ v     v 

It  is weakly hyperbolic if the eigenvalues    A    of 

(3.11) P(iw)  » i  I A    u 

are purely imaginary.  An example is given by the equation (2.6).   It  is  strongly hyperbolic  if there is a 

constant    K      and a nonsingular transformation    r ■ r(w)    with 

(3.12) max{|r(M)|     ,     |r_1(u))|}    < K.± 

such that 

(3.13) 
-1, 

r(w)p(iü))r   (u) = i 

^ 

iA       .  X.    real . 
J 

V 

All systems where the matrices    A      are Hermitian are examples of strongly hyperbolic  systems.   In that 

case we can choose the transformation      l"(w)    as a unitary matrix.  The wave equation  (l.l6)  is an example. 

Also the shallow water equations  (1.17) are strongly hyperbolic.   In this case we can symmetricize the 

coefficient matrices by introducing new variables 

and get 

°\   f"\ 
0 

V   I 
r m 
;\ 

rvQ  o 

7    01/2 
0   *0 

t1/2  V 
ay 

The Cauchy problem for weakly hyperbolic systems is weakly well posed. This follows from Theorem 3.1. 

For strongly hyperbolic systems the Cauchy problem is strongly well posed. This follows from Theorem 3.2, 

but also directly from 

P(iw)t, ,r-lreP(i*)tr-l r"*r| < K^ | iAti 
< 

and Lemma  3.1. 

The simplest parabolic differential equation is the heat equation 

3u/3t « 32u/3x2 
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The Cauchy problem is strongly well posed because 

o/. x    2      .      I P(iu)t. , -o)2t „ , 
P(ico) ■ -ü)   ,  i.e.,   |e     | < e    _< 1 

Generally we define 

Definition 3*1. A system (3.1) is called parabolic if its order is even, i.e., m * 2q and the eigen- 

values K    of the highest order term P (iü>)  fulfill an inequality 

(3.1*l)     Heal K < -6|u|m  ,  6 « const. > 0 

We want to prove 

Theorem 3»3.  For parabolic equations the Cauchy problem is strongly well posed. 

Proof:  For  |u>| f* 0 we can write P(iw)  in the form 

m-1 
P(iu>) - P (iw)(l + l    P"i(io))P.(iü))) 

j-0 m     ° 

where by (3.1*0 

lim  P"1(iü))P.(iw) = 0 . 

l-h-    n       J 

Therefore there is a constant    o    such that   for the eigenvalues    A    of    P(i<i>)    the inequality 

(3.15) Real \ < - «| 6|u>|m + a 

holds.  Therefore the representation (3.10) gives us 

I  P(i<-)t.   „ ^   ,i   ,i+,n        -ffiM t        at |e '|   <_ const. ( | co I   »t)     •  e *  e      1 

,2n,n    -n    at at 
< const.   (-T-J    e      e      < const,  e 
— ö — 

A very useful sufficient  criteria to determine whether a Cauchy problem is strictly well posed is 

Lemma 3.2.    Assume that 

(3.16) P(iu)  + P*(iw)  < al 

then 

|eP(iu)t|   < eat 

and therefore the Cauchy problem is strongly well posed. 

Proof:     e is the general solution of 

dy/dt » P(iw)y 

Therefore 

•JT |y|2 ■ y*(P(i«) + P*(i«))y < a|y|2 

and the lemma follows immediately. 

In many applications the equations are mixed hyperbolic-parabolic.  A typical example is 

3u/3t  = A    3u/3x + B    3u/3y  + C(32u/3x2 +  32u/3y2) 
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where A, B, C are symmetric matrices with C ^ 0. The Cauchy problem is strongly well posed because 

P(iw) + P*(iu>) < 0 

Another type of equations appearing in applications are the Schrödinger equations. The simplest example 

is 

3u/3t  - i  32u/3x2    . 

The Cauchy problem is strongly well posed because 

P(iW)«-iu>2       ,      i.e.,       |eP(iw)t|<l      . 

Another equation is given by 

- = AÖ + B"^ + CU 

Here 

A = -A*  ,  B = B* 

Again the problem is strongly well posed because 

P(iw) + P*(iu) » C + C*  . 

I.h.  The Cauchy problem for equations with variable coefficients I  . 

Consider the system (l.l) 

(U.l)      3u/3t = P(x,t,3/3x)u 

with variable coefficients. Connected with (l.l)  are the systems with constant coefficients 

(U.2) 3w/3t » P(x0,tQ,3/3x)u 

which we get from (U.l) by freezing the coefficients at a point x = xQ, t = t . In the last section we 

have learned to decide whether the Cauchy problem is well posed for equations with constant coefficients. 

Therefore it is natural to ask the following question: Assume that the Cauchy problem is well posed for 

all systems (U.2) with constant coefficients. Is it true that then also the Cauchy problem for (U.l) is 

well posed? 

Unfortunately general existence theorems using the principle of freezing the coefficients are only 

known for strongly hyperbolic and parabolic systems which are defined by 

Definition U.l. The system (U.l) is parabolic (strongly hyperbolic) if all the systems (U.2) are uni- 

formaly parabolic (strongly hyperbolic), i.e., the inequality (3.lU), ((3.12)) holds with a universal 

constant  6 > 0 (K ) . 

We have 

Theorem U.3. Assume that the system (U.l) is parabolic and that its coefficients are Lipschitz continuous. 

Then the Cauchy problem is well posed. 

Theorem U.U. Assume that the system (U.l) is strongly hyperbolic and that the coefficients are sufficiently 

smooth. Then for every x_, tQ there is a Hermitian matrix H ■ H(iw,x0,t0) such that (U.10) and (U.ll) 

holds. The Cauchy problem is well posed if one can choose H(iu>,xQ,t0) as a sufficiently smooth function 

of xQ, t. and u . 

There are two classes of equations for which the conditions of Theorem U.U hold. 
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(1) Synmetric hyperbolic  systems. 

3u/3t  «JA  (x,t)  3u/3x 

where    A (x,t) » A (x,t)    are symmetric matrices.   In this case 

P(iui,X0,t0)  = i  I Av(x0,t0)u,v « -P*(iu),x0.t0)     , 

and we can choose H = I . 

(2) Strictly hyperbolic systems. They are defined in the following way. 

Definition h.2. A first order system 

3u/3t » I  A (x,t) 3u/3xv 

is strictly hyperbolic if the eigenvalues of 

- i P(iu),x0.t0) = I  Av(x0,t0)u,v . 

are all real and distinct for all values of x , t  and u with  |u>| = 1. 

We collect the last statements in 

Theorem U.5« The Cauchy problem is strongly well posed for first order symmetric systems and for strictly 

hyperbolic systems. 

1.5. The Cauchy problem for equations with variable coefficients II. 

In the last section we have seen that for parabolic and hyperbolic systems one can decide whether the 

Cauchy problem is well posed or not by "freezing the coefficients". For equations of other types this 

procedure is not possible. Instead one can use the so called Energymethod. We start with 

Lemma 5.1.  Let u, v be vector functions of x ■ (x ,...,x ) and assume that  u(x),v(x)£s (L )  i.e., 
1     s  ^ d 

u, v and its first derivatives belong to Lp(R ). Let A(x)  C (R ) be a matrix then 

(5.1) (u,A(x) 3v/3x.) = -(3u/3x. ,A(x)v) - (u, 3A/3Xi v)  . 

If A is symmetric then 

(5.2) 2 Real(u, A(x) 3u/3x.) « -(u, 3A/3x u) 

Proof;     Let     u,  v    belong to    Cn  .  Then partial  integration gives us 

+«o *m 

I  u*A(x)  3v/3x. dx.   = -    / y- (Au)    • v dx.   = 
-co -oo i 

■No +eo 

/3u*/3x.  A v dx.   +    / u*  3A/3x.   v dx. 

Therefore (5.1) holds for all functions    u,  v£C     .  Now    C      is dense in    S (L  )    and therefore  (5.1) 

holds also for all functions in    S  (Lp).   Let    u =  v    then  (5-2)  follows  immediately  from (5-1) observing 

that     (u,v) » (v,u). 

Consider now the scalar Schrödinger equation 

(5.3) 3u/3t  = i  3/3x(p 3/3x u) + b 3u/3x ♦ c u = Pu 

1 2 where    p, b    and    c    are real functions of    x, t    belonging to    C  (R   ).   Let    u£S (L9)    be a solution 
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of (5.3). By Lemma (5.1) we have 

2 it  (u'u) = 2 ((3u/3t» u) + (u» 3u/3t)) * 

Real(u, 3u/3t) = Real i(u, 3/3x(p 3u/3x)) + 

Real(u, b 3u/3x) + Real(u, c u) 

(u, (c - ± 3b/3x)u) < a(u,u) 

where 

a = max (c - — 3b/3x) 
x,t 

Therefore 

(5.U)      ||u(x,t)|| < eat ||u(x,0)||   , 

i.e., an estimate of type (2.6) with p = 0 holds. 

This result can be generalized considerably. We have 

Theorem 5.1. Consider a system of differential equations 

IS.» .„.,.   I     [U-   (\, If  V J f 37-'■.>!•». S-l I    •«"   ■ L (*(«•*)•»( 3x v v  3x 

Assume that  either 

(1)        A    + A* >   0       ,      B    - B* v v — * v        v 

(2)        A    + A* >   5 >  0 v v 

Then an estimate of type (5«M holds.   In the first case      a * -x max(C + C   ).   In the second case 
x,t 

.2 
a  - — ± max(C ♦ C*)  + (US)'1 f  max   |B    - £\\       . 

x,t l^x.t.v    V V   ) 

Proof:  In the same way as for the example we get 

jfrlM«.»>||«-«i-i(..fc) ■ 

I(•(** ( A^D + (**(v) * (- -.iO)+ M) 

In the first  case we  get therefore 

Jt   IW*.t>||2<  (u,   (C ♦ C*)u) 1 2a||u(x,t)||5 

and the estimate follows  immediately. 
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In the second case we observe that 

\    v v / 

and 

|(u. (B - B*)^-^ « ■» |Bv - B*| ||u|| • l|3u/>l||  < 

<(U6)-1   /max  |Bv - B*|\ | |u||2 ♦ 6|13u/3xJ|2  . 

Therefore 

where 

£ l|u||2 < % (u , (C +C*)u) +S||u|| 
2 

ai 

v2 
6 - (U6)" -1 f -  |BV - BM 

\ x.t.v     y 

This proves the theorem. 

For systems of type (5«5) one can show: 

Theorem 5.2. Assume that the conditions of Theorem 5«1 hold. Assume furthermore that either all A = 0 

or that the operator  P?u ■ J -r— A -r-—  is elliptic, i.e., there is a constant 6 >  0 such that for 
v v v 

all x, t, w  the eigenvalues K    of 

I A (x,t)u2 

fulfill the condition 

W >«l"|2  • 

Then the Cauchy problem is strongly well posed provided the coefficients A , B , C belong to C  . 

1.6. The Cauchyproblem for nonlinear equations. 

Not much is known for nonlinear equations 

(6.1)      3u/3t « P(x,t,u,3/3x)u  . 

The only general result  is the  following: 

Assume that    u(x,t) ■ U(x,f) + u(x,t)    where    U(x,t)    represents a smooth known mean flow and    u(x,t)    a 

disturbance.   Linearizing (6.1) with respect to this mean flow gives us a linear system 

3u/3t  = P  (x,t,U  3/3x)u + F(U,x,t) . 

Then the following theorem holds. 

Theorem 6.1. Assume that U is sufficiently smooth and F(U,x,t) sufficiently small. If 

P (x,t,U,3/3x) fulfills the conditions of theorems U.3 or U.l* then 6.1 has in a given time interval 

0 < t < T a smooth solution. 

Though the result of this theorem is quite weak it shows anyway the importance of the linear 

theory. 
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II. Difference approximation for the Cauchyproblem. 

II.1. Some simple examples. 

Consider the differential equation 

(1.1) 3u/3t - 3u/3x 

with initial values 

(1.2) u(x,0) = e2*1"* . 

Its solution is given by 

(1.3) u(x,t)=e
2"iu(xn) . 

i.e. the solution is a wave which travels with speed one. We approximate (1.1) by a number of difference 

methods. For that reason we introduce a timestep At > 0 and a meshwidth Ax = N~ , N natural number. 

Let  (x ,t ), x ■ vAx, v = 0, ±1,±2,...; t ■ yAt,  u ■ 0,1,2,...; denote the gridpoints and define 

gridfunctions v (t) by 

(1.»*)       vv(t) = u(xv,t),    t = pAt . 

Furthermore, the fundamental difference operators    I, E, E    , D  , D   , D  , D D      are defined by 

(1.5) I v (t) = vy(t), identity operator 

(1.6) E vy(t) ■ v
v+i^)»    E" %(*) = Vvt^ translation operator 

(1.7) 2Ax D    v (t) » v  ..(t) - v    .(t) centered difference operator O    V v+1 v-1 

(1.8) Ax D+ v (t)    = v +,(t) - v (t) forward difference operator 

(1.9) Ax D    v (t)    = v  (t)  - v      (t) backward difference operator 

(1.10) (Ax)2D.D    v  (t) = AXDU (t)-v    ,(t)) - 
+ -     V +     v v-1 

= v      (t)  - 2v  (t)  + v    ,(t)    second order centered difference operator. 
v+1 v v-1 

How we approximate  (l.l) by one of the  following formulas 

(1.11) v (t+At)  = v (t)  + At D    v  (t), 
V V o     V 

(1.12) v  (t+At)  » v  (t)   + At D     v  (t+At), 
v v o    v 

(1.13) v  (t+At)  = v  (t-At)  + 2At D    v (t), 
V V O      v 

2 
(1.1U) v  (t+At)  = v  (t)  + At  D     v  (t)   + ^-    DD    v  (t), 

v v Ov 2+-v 

(1.15) (I  - \ At D   )v (t+At) =  (I  + \ At  D   )v (t)   . 
2 o    v 2 o    v 

Remark;    The construction of all methods except   (l.lli)  is obvious.   (l.lU)  is obtained in the following 

way:  For the solution of (1.1) we have 
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u(x,t+At)  ■ u(x,t)  + Atu    +^ (At)2u.     + <P((At)3) 

= u(x,t)  + Atux 
+^At)2UXJC +^((At)3)  « 

u(x,t)  ♦ At DQu(x,t)  + -| (At)2 D^D_ u(x,t)  = #(At)3 + At(Ax)2)   . 

All these difference approximations can be written in the form 

(1.16) (I   - C^hr^t+At)  * Qo vv(t)   + Qx vv(t-At)   . 

Here Q.  are operators composed of D , D+, D  . Practically all used difference methods are of this 

form. The truncation error is defined in the following way. 

Definition 1.1.  Let u(x,t) by the solution of the differential equation. Then 

(1.17) Mt) » (I - Q+1)u(xv,t+At) - QQu(xv,t) - Q_lU(xv,t-At) 

denotes the truncation error. If 

(1.16)      |Hv(t)| < M At((Ax)r + (At)8) , 

where the constant M may depend on thederivatives of u, then the method is called of order (r,s). 

There is never any trouble to determine the order of a difference method. One needs only to expand 

the solution into a Taylorseries. For example: 

u(x ,t+At) - u(x ,t) - At D u(x ,t) » At(u -u ) + 
V V O   V t  X 

(At*    + At(Ax)
2 

v 2 '       tt     6    xjcx 

Thus the method is of order (1,2). The same is true for the second method while    all the others are of 

order (2,2). 

As initial values for the above approximations we choose 

2iriu)X 
(1.19) vv(0)  - e V  . 

Then    v (t)    is completely determined except the solution of (1.1b).   In that case we have also to specify 

v (At). For example 

2rriujx 
v  (At)  * u(x  ,0)  + At  u  (x  ,0)  » (l+2rriu)At)e 

V 

The equations (l.ll) - (1.15) are all equations with constant coefficients. Therefore we can solve 

them explicitely. The solutions are of the form 

(1.20) vv(t) = vtOe
2*1"*  . 

Here    v(t) is the  solution of the  ordinary difference  equations: 

(1.11a) v(t+At) «    (1 ♦ Xi  sinC)v(t), 

(1.12a) v(t+At)  =    (1 ♦ Xi  sinO-1 v(t), 

(1.13a) v(t+At) « v(t-At)  + 2Xi  sin£ v(t), 

(l.lba) v(t+At) -    (1 ♦ Xi' sinC  - 2sin2 |)v(t), 
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(1.15a)     v(t+At) =((1 + -| iX ainC)/(l - <| iX  sin£^v(t), 

with X ■ At/Ax and £ = 2ir<i)Ax. The initial values are nov 

(1.21) v(0) « 1, 

and in the case of (1.13a) also 

(1.22) v(At)  « 1 ♦ 2Tii<i)Ax    . 

The solution of (1.11a)  is 

v(t) «  (1 ♦ Xi  sinUt/Atv(0)     . 

For every fixed    ui    we have 

i •       /■,   .   i •     •   ,- \t/At 2iTioüt lim    (1 ♦ Ai  sin£) ■ e 
At ,Ax-K) 

Therefore the solution of the difference approximation converges to the solution of the differential 

equation. However, in actuell computations rounding errors always produce so called "2Ax-waves". In this 

case C ■ \  • If we choose At/Ax = — then 

|v(t)|2 - 1(1 + Ai sinü
t/Ät|2 = (1 ♦ $)*'* |?(0)|2 . 

Thus 

t/At 1 10 100 500 

v2(t)|2/|v(0f 1 9.3 U.9-109 2.6.10U8 

and the computation is soon useless. If this happens then the method is called unstable. One can show 

that the method (l.ll) is for fixed relations At/Ax = X > 0 always unstable. For the method to be 

useful we must have 

(1.23)      |v(t)| - |v(t,u)| <. K|v(0,w)| 

for all frequencies u . Here K does not depend on w . It is easy to see that all the other methods are 

stable if we add in the case of (1.13), (l.l1*) the restriction At/Ax < 1. 

The methods (1.12), (1.15) are called unconditioned stable because they are stable for all 

X * At/Ax. The other two methods are called conditional stable. 

Besides stability and truncation error there are two other important concepts namely dissipation 

and dispersion, which we shall discuss now. Consider the difference approximation (1.12) with initial 

values (1.19). Its solution is given by 

tj. \       /-,       ^ •  ■ „x-t/At 2iriwx v (t) * (1 - Xi sin?)    e 

For sufficiently small  £  we have 

1 - Ai  sin£ 
- ixt,+ \\2 f + af) 

Therefore    £ ■ 2TTWAX    gives us 

(1 -  Ai  sinO~t/At  = e
2Tritut-(27r(1,)2x"lAxt+^a)3(Ax)2t) 

This shows that the amplitude of the numerical solution decays. The higher the frequency the faster is 

the decay. This is a purely numerical effect because the corresponding solution of the differential 

equation does not decay.  Methods which have this property are called dissipative.   If the amplitudes 
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-ö(2irW)
r(Ax)r"1t 
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const. > 0 

the method is said to be dissipative of order r. The method (1.12) is dissipative of order 2 while 

(l.lb) is dissipative of order k.   (The higher the order the slower the decay). 

Not all methods are dissipative. For example (1.13), (1.15) are nondissipative. We consider (1.15). 

In this case 
t/At 

2iriwx 
vv(t) 

1 - -~ sine 

1 + - i sin^ 

and it is obvious that 

W   • r 1 - — sinf, 

1 + 2 i sine 

However, for sufficiently small £ 

Therefore 

1 ♦ ~ sin? 

1 - - i  sine 

u -± ie3 +   (e5) 

vy(t)  • e 2TTiu(x+dt) 1       -? 2 
1 --g A  ^(2no)Ax) 

which means that the phasespeed depends on the frequency,  i.e.  there is dispersion.  This again is a 

purely numerical effect because there is no dispersion for the solution of (l.l). This phase error can 

destroy the accuracy of sharp  signals.   It   is then often better to make the approximation dissipative 

such that the waves with wrong phase speed will be damped at the same time. This can be done by changing 

(1.15) into 

(I  - | At D    + o.   At(Ax)3 D3>  
2
)V (t+At)  « (I  + \ At D    -a.   At(Ax)3 D.2!)  2)v (t)   . 

2 o 1 +    -      v 2ol +    -      v 

The simplest parabolic differential equation is given by 

(1.21») 
2   2 

3u/3t * d u/3x 

If we in (1.11) - (1.15)  replace    D      by    D+D_    and    D+D_    by    D+ D_     then we get difference 

approximations for (1.2b). The first and the fourth method are conditional stable the second and fifth 

method are unconditional stable while the third method is unstable.  However, we can stabilize the 

third method (Du Fort-Frankel)  if we replace it by: 

v   (t+At)   =  v   (t-At)   + ~r (v   ._(t)   -  v   (t+At)   -  v   (t-At)   + v       (t))   . 
v v A  2       v+1 V V v-1 

The above methods are the prototypes of methods commonly used in practical applications (see  til). 

One uses one of the in  (1.11) - (1.15) described techniques to replace the time derivatives and then 

replaces the space derivatives by centered differences. 

The methods are then referred to as:  First order explicit  (l.ll), Completely implicit   (1.12), 

Leap-frog (1.13),  Lax-Wendroff (1.1b) and Crank-Nicolson (1.15). 

II.2.  Stability and convergence. 

For systems  (1.16) with constant coefficients the stability can be decided in the same way.  One 

introduces the "ansatz" (1.20) into (1.16) and obtains a system of ordinary difference equation 
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(2.1) (I-Q_)v(t+At) »Qv(t) + Q ^(t-At), v(t) = v(t ,u>) 
1 o      -1 

which can be solved explicitely. If (1.23) holds then the method is stable. 

For systems with variable coefficients 

(2.2) (I-Q1(x,t))vv(t-At) « Qo(x,t)vv(t) + Q^U.t Jv^t-At) 

this simple test is not directly applicable. However, in the same way as for the differential equation 

one freezes the coefficients in (2.2) and considers all systems 

(2.3) (I-Q1(x0,t0))Tv(t+At) - Q0(vV
Vv(t) + <U<Vt0>Tv(t-«) 

with constant coefficients,  in the hope that  if all systems  (2,3) are stable then the same is. true for 

the original system (2.2). Threre is a large body of theory for this (see [1]). As an example we state: 

Theorem 2.1.    Consider a strictly hyperbolic system of partial differential equations and approximate 

it  by (2.2).   If all  systems  (2.3) are dissipative then (2.2)  is stable. 

Theorem 2.2.    Consider a parabolic system of partial differential equations and approximate it by (2.2). 

If all systems (2.3) are dissipative then  (2.2)  is stable. 

Stability garantees convergence.  The following theorem holds,   (see  [1].) 

Theorem 1.1.    Assume that the method is stable and that an estimate of the truncation error is given by 

(1.18).  Then 

(2.U) ||u(x,t)  - vv(t)||2 < A2t2 •   ((Ar)r ♦ (At)3) 

Here  | |u> | |  = ][ |u |'  Ax denotes the discret L^-norm. 
v 

For nonlinear equations there are two situations, l) The solution of the differential equation is 

smooth. In this case we have [3]. 

Theorem 2.3. Consider a difference approximation to a nonlinear system of partial differential equations 

and assume that the solution u(x,t) of the differential equations is smooth. Linearize the difference 

equations around u(x,t) and assume that the resulting linear system is stable. Then the solution of 

the difference approximation converges to the solution of the differential equation and an estimate of 

type (2.U) holds. 

2) For the other situation, namely that the solution of the differential equation is not smooth, 

practically no theoretical results are available. However, experience tells that if the solution of the 

differential equations is smooth except for shocks and contact discontinuities then there are difference 

approximations whose solutions converge. In this case the approximations have to be dissipative and have 

to be written in conservation form. 

II.3. On the choice of a difference scheme. 

In this chapter we want to discuss different methods of integrating the scalar equation 

(3.1)       3u/3t = - c3u/3x, u(x,0) = e2*1™, 

which has the solution 

/  . *   2iriw(x - ct) u(x,t) ■ e 

We ignore any errors due to discretization in time, i.e., we consider the differential-difference 

equation 
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(3.2) -£- v(x,t)  = - cD (h)v(x,t) 
at O 

which has local truncation error   CKh  )   . 

If    v(x,0)  ■ e
l27,wx    then (10.2)  has the solution 

i2*w(x - c.(w)t) 
(3.3) v(x,t)  = e 

where 

sin 2irwh 

The phase error,  »..,  is 

(3-5) ex(w) » 2wwt(c - c^w))   . 

A fourth order approximation is 

(3.6) -£• v(x,t)  = - c(^D (h) - ^D (2h)Wx,t)   . 
3t 303O 

If, as hefore, v(x,0) « el2wVX, then (3.6) has the solution 

i2irw(x - c-(w)t) 
(3.7) v(x,t) « e 2 

where 

(3.8)        c2(w)»c(8 siD ^;h
sin Urnth) . 

The phase error,    ep, is 

(3.9) e2(w) = 2irwt(c - c?(w))   . 

We now look for conditions such that the solutions  (3.3)  and  (3.7)  satisfy 

(3.10) e^w) <  e , 

(3.13) e2(w) < e , 

for    0 <  e.   < —    and    0 < t < -^- .     j    denotes the number of periods we want to compute in time.   It  is 

easily seen from  (3.M,  (3.5),  (3.8), and (3.9) that    e      and    e_    are increasing functions of    t. There- 
l —1 fore,   (3.10) and  (3.11)  are satisfied for    0 < t  < •£    if we choose    N =  (wh) such that 

(3.12) e^v.j) - 2tj(l - "iSfrM) » e 

and 

/-> !o\ /      -\       o  •/,       8 sin (2TT/N) -  sin  (Wfl)\ (3.13) e2(w,j) ■ 2irj(l -  ■—   ^yw 
L) * e  . 

H    denotes the number of points per wave length. 

We develop the left  hand sides of (3.12) and  (3.13)  in power series  in    (2w/N)    and retain only the 

terms of lowest order. Then we have 

(3.1k) e^j.H^  --^p- jN~2 
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and 

(3.15) e2(j,N2) -1£|2_ }*f    . 

Consider N  and H  as functions of j. Let e be the maximum phase error allowed, utilizing 

(3.1»<) and (3.15) we have 

(3.16) N^j) - 2ir(2*/6e)1/2j1/2 

and 

(3.17) N2(j) - M?rr/30e)1/yA  . 

A similar computation for the sixth order scheme 

(3.18) v - - e(| D (h) - | D (2h) ♦ ~ D (3h))v(t) 
t     2 o    5 o     10 o 

yields 

(3.19) N2(j)  - 2TT(72ir/7.'e)1/6j1/6 . 

If    e * 0.1    then 

\(5) " 20j1/2 , 

N2(j) - TjlA . 

N3(j) -    5j1/6   . 

and if    e = 0.1    then 

Vj)  - 6Ujl/2 , 

H2(j)  - 13jlA . 

N3(j) -    8j1/6 . 

Observe that the operation count  of the sixth order method is approximately    3/2    times that  of the 

fourth order method. The fourth order method has approximately twice the operation count  of the second 

order method.  The table above clearly illustrates the superiority of the fourth and sixthorder schemes 

over the second order scheme. The superiority is much more pronounced for smaller errors.   However, con- 

sidering the additional effort the sixth order method requires over the fourth order method the table 

above illustrates that  little or nothing is gained by using the sixth order scheme, as long as we allow 

an error of 1% and the integrations are not over extremely long time intervals, which is natural for 

many     practical calculations. The superiority of the higher order methods is even greater when the 
1/2 1/1» computations are extended over long tune intervals since    N,     grows like j       ,  N_    like    j       , and 

1/6 N      like j       . Thus,  for long integrations the sixth order method is more economical but the saving is 

small. 

We now consider even higher order approximations to the differential operator 3/3x. Let us now 

approximate the problem (3.1) by 

where 

^ v o      v  (m + v).'(m - v)J 
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When m ■ 1, 2, 3 we have the second, fourth, and sixth order schemes discussed earlier. As before we 

let N_ ■ (wh)"  denote the number of points per wavelength and j « cwt the number of periods to be 

computed. In this case it can be shown, Kreiss and Öliger [ 3 ], that  "  (j) -*■ 2    as 2m -*- «. Thus we 

must always have at least 2 points per wavelength. 

Observe that the amount of work the above 2n th order method requires is approximately m times 

the work of the second order scheme. In light of (3.18) it is doubtful that difference methods of order 

greater than six have any practical advantage for  practical calculations. 

There is another method for increasing the order of accuracy, namely Richardson extrapolation. The 

basis for Richardson extrapolation is that the solution of (3.2) can be expanded in a series 

(3.26) v(x,t) = v(x,t,h) * u(x,t) + h2Wl(x,t) + h\*2(x,t) + h
6w3(x,t) ♦ ... 

where the    w.(x,t)    are the solutions of certain inhomogenous equations: 
J 

3v./3t  - c3w./3x.  + r.(x),  w.(x,0)  =  0   . 
J J       J J J 

Let  us   determine the    v..   Substituting (3.26)  into (3.2) yields 
J 

2 U 
3u/3t  * h  3w  /3t  + h 3w2/3t  +   .. . 

(3.27) - - c(D u + h^ w,   ♦ h w0 +  ...)   . o 01 d 
2 U 

DQU » 3u/3x + |7 33u/3x3 + |r 35u/3x5 +   . . . 

and the corresponding expansions hold for the    w.(x,t).  Introducing these expressions into (3.27) gives 
J 

us, after collecting terms in powers of    h, 

3w 3w 

ir' -e TT - 3! *u/3x • 

3T ■ " c JT - 5l a5u/ax5 - if »V*3« 

TT " " c TT ' TT 3?U/3X7 " fi *\^ ~ Ji 3V3x3 

u , e2»iw(x - ct)     and therefore    w      is the solution of 

~     /ft.                 ^1       c(2itjü))3    2iriw(x - ct) 
*w / 9t  « -  c   ~       - —'—r-;  e , 

3x 31 

v^XjO)  « 0, 

c(2*iw) 2iriw(x - ct) 

i.e., 

VjU.t) = -        3,        t   • e 

Correspondingly we get 

£ P P 
/    Ax       c     //%_.   ,5                 2irio)(x - ct)   .   (2wiu) c        t       2nriw(x - ct) 

w?(x,t)  - j? (2*10)'  •  t   •   e + 3,   .   3t   .   2      * 

,     .%       /     c     ,_  .   J      .    .  c2(2rriü))         t2      c3(2niü))9      t3 *  2rriüi(x - ct) 
w3(x,t) - (- j? (2iriw)        t  +  3,   .   5:  -  3,   ,   3,   .   3,   .   3,   )e 

Let  us compute    v(x,t)  ■ v(x,t,h)    for a specific    hQ    and then also for    2h_.  We get 

v(x,t,2hQ) » u(x,t)  + Im^U.t)  + l6hQW2(x,t) +  ... 
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and therefore, 

u(x,t) = -| Av(x,t,h0) - v(x,t,2h0j) + UhQW2(x,t) + ... . 

Thus, if we neglect higher order terms, we have after j periods in time 

|u(x,t) -i (Mx,t.h0) - v(x,t,2h0))|ahV2(x,t)| - k  (f)U  • {2n)  ^ J  , 

where N is defined as before. Corresponding to equation (3.IT) we have 

■ - a, • (2W)1'2 • (l/12e)lA • j1/2 

1/2 
15j      for e « 0.1 

26.8 j '* for e = 0.01 . 

Thus the improvement over the original leap-frog method (see equation (3.l6)) is not so impressive for the 

lOJt error limit but is substantial for the 1%  error limit. In any case, the fourth order method (3«l8) is 

better. 

One can of course also compute v(x,t,h) for h = 3h_ . Then we can also eliminate the h  term in 

(3.26) and obtain 

N  = 

[l2.9jl/2    for a 10* error 

19«0j1/2 for a 1%  error 

Thus not much is gained. The fourth order method (3«l8) is again better. 
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III. Initial boundary value problems for hyperbolic partial differential equations. 

111*1« Differential equations in one space dimension. 

The simples hyperbolic differential equation is given by 

(1.1)      3u/3t « c 3u/3x, 

where c is a constant. Its general solution is 

u(x,t) - F(x+ct), 

i.e., it is constant along the "characteristic lines" x ♦ ct » const, (see fig. !•)« Therefore, if we 

want to determine 

u(l,t)-g(t) 

u(0,t)=g(t) 

,.0  uU'°)=f(x) x=l 
x«0 «<*.°>«f(x>  x=1 

fig. 1. 

the solution of (l.l) in the region O^x^l, t^0 we have to describe initial conditions 

(1.2) u(x,0) * f(x)  , 

for t « 0 and boundary conditions 

(1.3) u(l,t) * g(t)   if  c > 0  or  u(0,t) = g  if  c < 0, 

for x * 1,0 respectively. 

There is no difficulty to generalize the above results to systems 

(l.»0 9u^t ■ A 3u/3x 

Here u(x,t) = (u (x,t),...,u n (x,t))* denotes a vector function and A a constant n*n matrix. 

Hyperbolicity implies that A can be transformed to real diagonal form, i.e., there is a nonsingular 

transformation    S    such that 

(1.5) 

trber« 

S A S 
-1 

ft 

V 

'A1 0 

0     .   .   .     0 

a„       .   .     0 

= A 

^ 
C. 

0    a 

< 0,    A 
il 

7 

Vi   °   • • •   ° 
\ 

0    a r+2 .   .     0 

•:....    o 

> o 
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are definite diagonal matrices.  We can thus  introduce new variables 

(1.6) v =» Su 

and get 

(1.7) 3v/3t   * A  3v/3x     . 

The last  equation can also be written in partitioned form 

(1.8) 3vI/3t   »A1   3vr/3x, 3vn/3t   =AH3vII/3x, 

where v1 = (v(l\... tr'T*)' , v11 = (v(r+1\... ,v(n))'. (1.5) represents n scalar equations. Therefore 

we can write down its general solution: 

(1.9) v(j)(x,t) * v(j)(x+at),   j = 1,2,...,n, 
d 

which are constant along the characteristic lines x * a.t * const.. The solution is uniquely determined 
d 

in the domain 0 £ x £ 1, t ^ 0 and can be computed explicitely if we specify initial conditions 

(1.10) v(x,0) = f(x),   0<x<.l, 

and boundary conditions 

(1.11) vn(0,t) « R0v
n(0,t) ♦ gQ(t), vIX(l,t) = R^d.t) ♦ 6l(t) . 

Here R , R  are rectangular matrices and g , g  are given vector functions. If we consider wave 

propagation, then the boundary conditions describe how the waves are reflected at the boundary. 

Nothing essentially is changed if A = A(x,t) and R. = R.(t) are functions of x, t. Now the 
J   J 

characteristics are not straight lines but the solutions of the ordinary differential equations 

dx/dt » a.(x,t) . 
J 

More general systems 

(1.12) 3v/3t = A(x,t) 3v/3x + B(x,t)v + F(x,t) , 

can be solved by the iteration 

(1.13) 3v[n+ll/3t  = Ä(x,t)3v[n+11/3x + F[n] 

where 

F[nl   =  B(x,t)v[nl   + F     . 

Furthermore, it is no restriction to assume that A has diagonal form. If not, we can, by a change of 

dependent variables, achieve the form (1.10). 

We can therefore develop a rather complete theory for initial boundary value problems by using 

characteristics. This has of course been known for a long time. The only trouble is, that this theory 

cannot be easily generalized to problems in more than one space dimension. For difference approximations 

it is already inadequate in one space dimension. 

III.2. The energymethod. 

The main tool for proving the existence of solutions in more than one space dimension consists of 
Ma priori estimates". Once these estimates have been established the existence and uniqueness of solutions 

follow by standard functional analytic arguments. The estimate are of the following type. 
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Consider a system of partial differential equations 

(2.1) 3u/3t  = P(x,t,  3/3x)u 

in a domain    ß    with initial conditions 

(2.2) u(x,t1)  = f(x) 

at  some time    t a t   , and 

boundary conditions 

(2.3) R(x,t)u = 0 

on    3fl  .  The problem 

is called weakly well 

posed if 

(2.1*) l|u(x,t2)||n< Ke012^1   l|u(x,t2)||nji 

Here     j | • | |       denotes the usual L^-norm over    ft    and     ||» | | the Lp-norm which also contains all space 

derivatives up to order    p.  If    p a 0   then we call the problem strongly well posed. 

There is a large class of problems for which the estimate (2.1*)  is immediate. This is the class of 

problems for which    P    is  semibounded,  i.e.,  for every fixed    t    and all sufficiently smooth    w    which 

fulfill the boundary conditions we have 

(2.5) (w,Pw)  +  (Pw,w)fl <  2a||w||2    . 

Here    a     is  some constant,   independent  of    w.   (2-5)   implies for all  sufficiently  smooth  solutions: 

~  | |u||^ «  (3ut3t,u)n  +  (u.   3u/3t)ß =  (Pu,u)Q  ♦ 

+ (u,Pu)fl < 2a||u||ß
?    . 

Therefore 

<x(t  -t   ) 
l|u(x,t2)||fl<e       2    *   ||u(x,t2)||fl  . 

For symmetric hyperbolic  systems this theory has been developed by K.O.  Friedrichs [3]   .  As an 

example consider a first order system 

(2.6) 3u/3t   = ASu/Sx^^ +    I    B.3u/3x.  = P(3/3x)u 

J-2 

with constant  coefficients for    t ^ 0    and    x£ ft.  Here    ft    denotes the half space    0 < x.   < •    , 

-• < x.    < » ,    j=2,...,m. Furthermore    A    has the diagonalform (1.5) and the    B.    are symmetric matrices. 
J J 
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fig. 2. 

For t = 0 initial values 

(2.7) u(x,0) = f(x),   ||r||n < - , 

and for    x    = 0    boundary conditions 

(2.8) u (0,x_,t)  = RQ u    (0,x_,t),  x_ = (x?,.. 
m 

are given 

Fa 

ditions 

Partial integration gives  for all sufficiently smooth    w 6.L (ft), which fulfill the boundary con- 

(w,Pw)    + (Pw,w)    = - /    w* Aw/dx    = 

v° 
- -    /  (v     )   (A    +P,       A R   )w    /    =A dx_  . 

3fl x =0 

Therefore the operator P is semibounded if R  is such that 

A11 + R* A1 R > 0 
0    o — 

This is for example the case if  |R |  is sufficiently small. The disadvantage of the energy method is 

that is a trick. When it works it is the most simple method to derive existence theorems. But it does not 

give necessary and sufficient conditions. We shall now discuss another technique based on the Laplace 

transform which gives necessary and sufficient conditions. 

III.3. Laplace transform. 

We consider again the problem (2.6) - (2.8) and assume now that the system is either symmetric or 

strictly hyperbolic, i.e., the matrices A and B. are symmetric or the eigenvalues of the symbol 
J 

m P 
P(iw) = i(Au, + I    a. B.), a»  real,  ]> U |  + 0 

are all distinct and purely imaginary. Furthermore the matrix A has the form (1.5) which is obviously 

no restriction. 

In one space dimension the initial boundary value problem is always well posed. This is not true in 

higher dimension. Already S. Agmon [2 ] has observed 
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Lemma  3.1.    Assume that the problem  (2.6)  - (2.8)  has a solution of the form 

m 
w(x,t) ■ e -    - $(*)»  <üj ,x > •    I    oj.x.,    oj.    real 

j=2    J  J        J 

where 

n#(x1)ii
2-7 ki2dx1<.   . 

X 0 X 

Then the problem is ill posed. 

Proof:     If    w(x,t)     is a solution then the same is true for 

v (x,t) = et(^
+i<-.^_>) n       j 

T 1 

for all real numbers      T >  0.  Thus there are solutions which grow arbitrarily fast with time. 

We shall now derive algebraic conditions such that there are solutions of the above form.   Introducing 

(3.1) into (2.1) gives us 

Lemma 3.2.    There is a solution of type (3.1) if and only if the eigenvalue problem 

(3.1) s+ » Ad*/dx    + i  B(u  )*     , B(u  ) = £ B.w. 
-*■ — — 0  J 

Ikll   <  -     . *X(0)  = R0 ♦II(0) 

has an eigenvalue with Real    s >  0. 

(3.1) is a system of ordinary differential equations which can also be written in the form 

(3.2) d*/dac    ■ M*   ,        M = A_1(s-i B(w_))     . 

For    M    we have 

Lemma  3.3.    For real    s > 0    the matrix    M    has no eigenvalues    <    with Real    K - 0. The number of eigen- 

values with real < < 0    is equal to    r    the number of boundary conditions. 

Therefore the general solutions of (3*1) belonging to    L?    can be written as 

r 
(3.3) I    A.  *.(x) .. 

j*l    J    J 

Introducing (3«M into the boundary conditions gives us a system of linear equations 

C(s)A »0  „   \  = (X. X )'  . 

Thus we can express our results also in the following form: 

Lemma l.h.    The problem (2.6) - (2.8) is not well posed if  Det |c(s)| ■ 0 for some s with real s > 0. 

The main result of this section is (see [71 , [l1*] , [13]). 

Theorem 3.1.  Assume that Det |C(s)| "f 0 for Real >^ 0 then the problem is strongly well posed. 

There is still the boundary case that Det |c(s)| ■ 0 for some s = i£, £ real. As R. Hersch [5] has 

shown these are weakly well posed problems. The main trouble is that the generalization of these boundary 

cases to variable coefficients is very difficult. 

III.1*. Problems with variable coefficients in general domains. 

Now we consider systems (2.6) - (2.8) with variable coefficients in a general domain Q  * (0 <^ t £ T) 
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Here we assume that the coefficients and the boundary 3fl are sufficiently smooth. Connected with this 

problem there is a set of halfplan problems which we get in the following way: Let P * ^xo»to^ ^ 

30 x (o <_ t < T) be a boundary point and let x « S(x), t = t - t  with S(x.) =0 be a smooth trans- 

formation which locally transforms the boundary into the halfplan x = 0. Apply this transformation to 

the differential equations and the boundary conditions, freeze the coefficients at x = t = 0 and con- 

sider the halfplan problem with constant coefficients. Then we have 

Theorem k.l.    Assume that for all these halfplan problems the conditions of section 2 hold, i.e., that 

all the operators connected with the halfplan problems are semibounded. Then the original problem is 

strongly well posed, (see [3].) 

Theorem U.2.  If the system (2.6) is strictly hyperbolic and if for all the halfplan problems with 

frozen coefficients the determinant condition of theorem 3.1 is fulfilled then the original problem is 

strongly well posed, (see [7l, [1^1, [13].) 

Remarks,  l) It is not known whether the determinant condition garantees wellposedness for symmetric 

systems which are not strictly hyperbolic. This is a rather disturbing gap in the theory. 

2) Quite a lot of progress has been made for the boundary case that  Det |c(s)| = 0 for some 

a ■ iC, C real. The key is to consider not only the halfplan problem for 3u/3t ■ Pu but also all per- 

turbed problems 3u/3t = Pu + Bu where B is a constant matrix. 

3) It is assumed that A is nonsingular. However, progress has been made also for the singular 

case, (see [12].) 

U)  If the boundary is not smooth then new serious problems arise. See for example [10], [11]. 

III.5. Difference approximations in one space dimension. 

We start with an example which explains most of our difficulties. Consider the differential equation 

(5.1) 3u/3t = 3u/3x 

in the quarter plane x >_ 0, t ^ 0 with initial values 

(5.2) u(x,0) = f(x) 

From section 1 we know that no boundary conditions need to be specified for    x » 0, t j>  0.  We want to 

solve the above problem using the leap-frog scheme.  For that reason we introduce a time step    At >  0 

and a mesh with    Ax >  0    and divide the x-axis into intervals of length    Ax.  Using the notation 

v (t)  = v(x   ,t),       x    = vAx,    t  = t    » uAt   , 
v v v u 
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we approximate  (5«l),   (5.2) by 

(5.3) v (t+At)  « v  (t-At)  + 2At D    v  (t),       v = 1,2,. 
V V o    v 

with initial values 

(5.»*) vv(0)  »  f(xv),       vv(At)  - f(xv)  + At     f(xv)/3x     . 

Here 

D v    =  (v - v    .)/2Ax 
o v v+1 v-1 

denotes the usual centered difference operator.  We assume that   (5.3)  is  stable for the Cauchy-probelm, 

i.e.,    0 < At/Ax < 1   . 

It  is obvious that the solution of (5*3),   (5-1*)  is not yet  uniquely determined.  We must give an 

additional equation for    v . For example 

(5-5) v0 = 0 . 

This relation is obviously not consistent. In general it will destroy the convergence. Let  f(x) = 1. 

Then u(x,t) = 0 and 

vv(t) = 1 + (-l)
Vyv(t) , 

where    y (t)    is the solution of 

yv(t+At)  - y^(t-At)  -  2At DQ yv(t),       v = 1,2,... 

(5.6) 
y   (0)   » y   (At)  «0   , 

v v 

with boundary conditions 

(5.7)     yQ(t) » -1 . 

(5-6)  and  (5.7)  is an approximation to the problem 

3w/3t  * -3w/3x   , 

w(x,0) = 0,    w(0,t)  = -1   , 

JO      for    t  < x 

-1      for    t > x    . 

Therefore 

\M • 
("1 for    t  <  x. 

(.    1 -  (-1)V  for    t  >  x. 

This behaviour is typical for all nondissipative centered schemes.  Therefore one needs to be very careful 

when overspecifying boundary conditions. The oscillation decays if the approximation  is dissipative. 

However,  near the boundary the error is as bad and,  for systems,  it  can be propergated into the interior 

via the ingoing characteristics. 

Now we replace  (5»5) by an extrapolation rule 

(5-8) vQ(t)  - 2v1(t) + v2(t) = 0. 
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which is the same as using for    v = 1    the one-sided difference formula 

(5.9) v^fAt) = v1(t-At) ♦ -^ (v2(t) - v^t))    . 

The approximation is only useful if it  is stable.   If we choose 

c for      v ■ 0 

v (0) »    1 ,    v (At)  H 0    for all v 

for      v > 0 

as initial values then an easy calculation shows that 

MWtHI^ = const.   (t/At),     IMI^- [|v|2    Ax  . 

This growth rate is the worst possible and one might  consider the approximation to be useful.   However,  if 

we consider (5«l)  in a finite interval    0 < x <_ 1    and add the boundary condition 

(5.10) u(l,t)  = vN(t) =0 NAx = 1 

for both the differential equation and the difference approximation, then there are solutions which grow 

like 

(5.11) llWtJM^ ■ const.   (t/At)1   , 

which is not tolerable.  This behviour can be explained as follows: At the boundary    x ■ 0    a wave is 

created which grows like    t/At.  This wave is reflected at the boundary    x = 1    and is increased by 

another factor    t/At    when it  hits the boundary    x = 0    again, and so on. 

All these difficulties can be avoided by using,  instead of (5*9), the onesided approximation 

v(t+At)  * v_(t)  +£- K^) " »,(*» 
1 1 AX d 1 

v1(t+At)   = vL(t-At)   +~ (v2(t)   -i(V;L(t+At)   + v1(t-At))) 

One can also keep  (5«8)  if one replaces the leap-frog scheme by the Lax-Wendroff approximation or any 

other dissipative approximation. 

Let us discuss the general theory.   (For details see  [b],   [7],   [8]).  We consider general difference 

approximations 

(5-12) vv+1(t+At) = Q Tv(t) 

with boundary conditions 

(5.13) BvQ = 0 

such that the solution is uniquely determined by the initial values 

v (0) » f 
v     v 

The approximation is useful only if it  is 

1) consistent, i.e.  it converges formally to the continuous problem 

2) stable (weakly or strongly) which is the difference analog of wellposedness. 

There is never any problem to derive consistent  approximations.   It  is the stability which causes the 

problem.  Corresponding to the continuous problem there are two methods to decide whether a given method 

is stable:   Laplace transform and energy method. 

The theory based on Laplace transform is analog to the theory for the continuous case. The stability 
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is determined by the properties of the eigenvalue problem 

(5.1*0 (*-Q)*v-0,     B    #0-0,     IUIlfx«IUv|
2    Ax < «     . 

Corresponding to lemma 3.2 we have under reasonable assumptions for    Q. 

Lemma 5«1.     Assume that   (5.1*0  has an eigenvalue    z =  z      with     |z_|   >  1. Then the approximation is not 

stable. 

This condition can also be expressed as a determined condition 

Det   |c(z  )|  * 0    for some    z « z      with    |zJ  > 1 

Then,  corresponding to theorem  3.1, we have 

Theorem $.1.    The approximation is strongly stable if      Det   |C(z)|   + 0    for     |z| ^ 1   . 

Now we turn to the energy-method.  Consider again the differential equation  (5.1),  (5*2).  The problem 

is well posed because there is an energy equality 

(5.15) (u,  3u/3x)  +  (3u/3x,  u)  = -   |u(0)|2 . 

Therefore we want to construct approximations to 3/3x which have the corresponding property. 

We define a discrete norm 

CO 

(5.16) ^U»V^A  " u Av AX +  j>  u  V  Ax. 
V»r 

Here u « (u ,...,u .)',  v = (v ,...,v   )*  denote the first  r components of u,v and A ■ A  is 

a positive definite r*r-matrix. In f9] we have shown that one can construct accurate approximations Q 

for which (5.l6) hold. The main trouble is that the norm and the approximation near the boundary are 

very complicated. This makes its generalisation to approximations in more than one space dimension on 

general domains difficult. Furthermore, it is not known how to include dissipation in the construction. 

However, it should be pointed out that this construction also works in more than one space dimension 

provided the net follows the boundary. 

III.6. Difference approximations in more than one space dimension. 

Nothing essentially new needs to be added to derive the theory of difference approximations for half- 

planes because Fourier transforming the tangential variabels x  gives us a set of one dimensional problems. 

The situation becomes much more complicated if we consider general domains with smooth boundaries. Observe, 

that this is not the case for the differential equations because we can always introduce a local coordinate 

system, thus reducing the problem to a set of halfplane problems. This is not possible for difference 

approximations. Once we have picked the net everything is fixed. D. Schäeffer [15] has tried to handle this 

situation and has developed a beautiful theory. 

However, its practical importance is somewhat doubtful. Let us consider a very simple example. We 

want to solve the differential equation 

(6.1) 3u/3t » -3u/3x 

in the two dimensional domains 2y - x <_ 0. The initial values are 

(6.2) u(x,y,0) = f(x,y)  for  2y - x < 0,  t - 0, 

and the boundary conditions are given by 

(6.3) u(x,y,t) - g(x,y,t),  for 2y - x = 0, t>0. 

We introduce gridpoints by x. = jAx, yi = iAy,  Ax = Ay  . 



4-32 

fig. 3. 

Thus» there is a gridpoint on the boundary only on every second row. Now we approximate (6.1) by the 

Leapfrog scheme and the boundary conditions by 

vi,j = gi,j  if *** ■' vi,j + Vi.j " 2g
i+i ,•  if 2j'i+1- 

Here v. . = v( iAx), jAy,t). Therefore we get two different solutions on two different meshes. As long as 
1»J 

the solution of the differential equation is smooth the solutions of the difference equation on these 

different meshes fit together. However, if for example f £ 0 and g = 1 then the solution of the diffe- 

rential equation is a discontinuous wave propagating into the interior. Now the solutions of the 

difference approximation on the different nets do not fit together. 

We get osciallations in the tangential direction of the wave. There are two possible methods for 

remedying the situation, l) Add dissipation to smooth out the tangential oscillations. 2) Introduce curved 

meshes which follow the boundary. The second procedure is much more accurate and should be prefered if 

possible. A lot of progress has been made in this direction. See for example [1]. 
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ABSTRACT 

The basic Lax-Richtmyer theory of the stability and convergence of linear 
difference schemes is by now well established and widely known.  We 
discuss here some of the more demanding requirements met in practical fluid 
flow calculations, including the control of non-linear instabilities, 
dissipation and dispersion; the modelling of conservation properties and 
the implementation of boundary conditions are also considered.  The use of 
the modified equation approach is studied as an alternative to the Lax- 
Richtmyer theory.  Finally, an error analysis for finite element methods 
is given showing the high accuracy that may sometimes be achieved with the 
correct treatment of non-linear terms. 

NOTATION 

Each notation is defined in the text where it first occurs but for convenience the more 
frequently used symbols are gathered here. 

Ax, At, mesh lengths in x, t; Xs At/Ax 

U°, the value of U at x « jAx, t = nAt 

<u, v> = u.y_ dV or L-\AV u. ,v.f vector or scalar, any dimensionality 
J * J /   J, J 

||u||2 » <u, u> 

k, wave number of fourier mode 

u, P,  fourier transforms of variable u, operator P;  (Pu) * Pu 

K,  an eigenvalue of the amplification matrix of a difference scheme 

S ■ sin kAx, C = cos kAx,  s ■ sin jkAx,  c = cos jkAx 

1.  LAX-RICHTMYER STABILITY THEORY 

The equations of fluid flow for the vector of unknowns *(£» O may be written in the 
general form 

w + P(w) = 0,    w(r, 0) given, (1) 

where the subscript t denotes partial differentiation and P is a non-linear differential 
operator in the spatial variables r.  A general two-level finite difference scheme may be 
written similarly as 

Wn+1 ♦ AtP^W0*1) = Wn - AtP^W11),    W° given, (2) 

where w/1 is to approximate w at t = nAt and P , P  are difference operators whose sum 

is to approximate P.  It is well-known that for Wn to converge to w at nAt as the t 
and r meshes are 7efined it is necessary not only that F^  + P^ be consistent with P but 

also that the difference scheme (2) be stable. 

For linear problems, the relationship between these three concepts is made precise by the 
Lax Equivalence Theorem (see Lax and Richtmyer [l] , Richtmyer and Morton [2]) which states 
succinctly 

consistency + stability <=> convergence. 

Here consistency is defined in terms of the truncation error, T.E.,  obtained from applying 
the difference scheme to the solution of the differential problem; with proper normalisation, 

T.E. 
wn+1 - wn 

At ♦ ^(W*1) ♦P0(w
n). (3) 

The scheme (2) is said to be consistent with the equation (1) if T.E. ■»- 0 under the mesh 
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refinement.  For a linear scheme, which we signify by removing the brackets from the argument 
of P, stability is defined as the existence of a constant K, for which 

x-1 Iw"! | = | | [(!♦ AtP^-1!! - AtPo)]nW°| | < K| |W°| | ,    nAt <  1, (U) 

the relation to hold uniformly under the mesh refinement: the norm for our purposes may be taken 
as the root-mean-square norm. 

In effect the theory focuses all the attention on the difference scheme and the establishment 
of stability.  It had reached a high state of development by about 196U.  Kreiss [3] had estab- 
lished necessary and sufficient criteria for deciding the stability of any constant coefficient 
scheme by means of fourier analysis:  this completed the analysis begun by von Neumann which led 
to the necessary stability condition associated with his name.  Moreover Kreiss [U] had shown 
for hyperbolic systems of equations how the addition of a small amount of dissipation could 
maintain stability in the presence of coefficients varying smoothly with £.  This in turn 
opened the way for applying Strang's [5] demonstration of convergence for smooth solutions of 
non-linear hyperbolic systems if the corresponding linearised difference scheme is stable. 

However, this rather complete theory was already beginning to show its limitations as more 
refined criteria were applied to the selection of methods, and the requirements of high accuracy 
in complex situations led to more sophisticated difference schemes. 

2. PRACTICAL LIMITATIONS OF THE L-R THEORY 

Even in quite simple situations the dependence of the stability definition on what happens 
only as At ■♦ 0, is confusing and misleading. For example, the following situation arises if 
the simultaneous convection and diffusion in the equation 

u_. + au = bu (5) 
t      X      XX 

is approximated by the scheme 

Un+1 - Un + a V   _ 62Un ... 
♦ a -ET" * * 77TT2 » (6) At        Ax     (A 

where A U. * ftü*.- - U.  ), 62U. « U.  - 2U. + U.   and j  labels the mesh-points, 

amplification factor, giving the growth per time step of the fourier mode e  , is 

The 

<(k. Ax, At) = 1 - ^ i sin kAx - -j^y2 sin
2 JkAx . (?) 

Thus stability requires that bAt <_ s(Ax)2 and, if b > 0,  this ensures that 

M2 ii'^/ii'  $" (8) 

which is sufficient for L-R stability.  However, for even modest values of a2/b this growth 
rate is quite unacceptable in practice.  As a result the more stringent definition of 
"practical" stability [2] or "strict" stability [6] is often used: 

||wn|| < eat ||W°|| , (9) 

where a is the smallest constant for which  | |_w{t) | | <_ e  11)1(0)11  applies to the differential 
equation.  In the present example a = 0, and the condition for strict stability becomes 

which properly indicates the limited value of the scheme. 

More seriously, terms which are 0(At)  occur throughout the development of the L-R stability 
theory for variable coefficient and non-linear problems and are properly neglected.  Thus for 
the simple non-linear advective equation 

u + uu * 0 (11) 

no distinction is made in this theory between the two schemes 

nn+l  „n-1     A U
n 

u"*1 - u"-1 

 üt—* 3^[U" »o U" * V""'2] * ° • <12b> 



5-3 

The former, however, exhibits the non-linear instability first demonstrated by Philips [7], while 
the latter largely eliminates this through its energy conservation property - see AraXawa [8] and 
Morton [9] .  If UAt/Ax < 1, the growth rate of the linearised equations in both cases is given, 
apart from terms which are O(At), by the familiar quadratic for the leap-frog method 
K2 - 1 t 2iXUSic ■ 0, where X = At/Ax and S ■ sin kAx.  Moreover, when the 0(At)  terms are 
included the two equations are only modified to 

<l  - 1 ♦ X(2iUS ♦ AQU)ica = 0 (13a) 

r{ . 1 ♦ X(2i~S ♦ X *  X AoU)<b = 0 , (13b> 

where U. » rr([).  ♦ U. ♦ U.  )  and C » cos kAx.  These are sufficient to demonstrate the well- 
J  J J—A   J   J -i 

known leap-frog jitter: when A U > 0, corresponding to a rarefaction wave, the spurious root 

K~>  -(1 - X2U2S2)8 - iXUS grows, while the principal root grows only when A U < 0.  This is an 

example of weak or relative instability, familiar in ordinary differential equations but more com- 
plicated here because of the space dependence.  But the point to note here is that equations 
(13a) and (13b) do not distinguish in any important way between the two methods.  To achieve 
proper understanding of this situation it is best to go to a non-linear analysis [id].  However, 
in more complicated situations this may not be feasible.  Then it is encouraging to find that, 
if we abandon the approach of studying the stability of the difference scheme quite separately 
from the accuracy with which it approximates the differential equation, then the clear improve- 
ment of (12b) over (12a) can be seen.  We shall do this below in our consideration of the 
"modified equation" approach. 

The difficulty of the analysis necessary to apply the Lax-Richtmyer theory rigorously is the 
third and final limitation that we raise against it.  As an example, we consider the "donor-cell" 
scheme for the Eulerian equations of fluid flow as studied by Hirt [ll], omitting the artificial 
viscosity terms: 

n+1 
p pD-776^n>u^  ■ {1^ 

(ou)n+1 =  (pu)n - £ 6[<(pu)n>u* ♦ p°]   , (15) Ax 

(Jpu2  ♦  p/Y-l)n+1  «   (*pu2  ♦  p/Y-Dn - ~ 6[<(W  ♦  p/Y-l)n>u* ♦  pV*]   ,     (16) 

where    p,  u,  p    are  density,  velocity and pressure,     6    is  the central difference operator 
6w.  ■ v..    - w.   ,, v.   ,  « s(w.  ♦ w.     )    and the donor-cell differencing is defined by 

J+*  Iw. 

if u. 1 > 0 

Si  if vi< ° • 
The dependent variables we take to be p, m ■ pu and p, with corresponding perturbations to 
p ♦ Ap, m + Am and p ♦ Ap.  The linearised equations for the perturbations are then obtained 
in the usual way: we consider only the case where u > 0 everywhere and look at the terms 
arising from the space differencing in the first equatTon.  Note that u.+i ■ j[(m.  /p .  ) * 
(m./ p.)]  so that we obtain after a little manipulation, J * ' J1  J 

•    ei=i, }{_J_(ill,).+i ♦ (! . j^iJtAmJj - (ta)j_1 
J 

P. P- 
—"—(Ap ) . ♦ (u.  ♦ u . —"■ 
JA J 

This is already fairly unmanageable unless we abandon terms which are 0(Ax), and because of the 
stability condition also 0(At),  even though they were seen to be very useful in the previous 
simple example.  We then get for equation (lU) 

(Ap)0*1 » (Ap)n - ü[A0(A«)
n - 5uV(Ap)D] . (18) 

Carrying out a local fourier analysis on just this equation shows the stabilising effect of the 
last term and one might deduce that without it the system of equations would be unconditionally 
unstable.  However, Hirt claimed that if the first term were evaluated at the new time, giving 

A m11*1 in (ll*) and A (Am)0*1 in (18), the system would be stable according to a fourier analy- 
o o 

sis.  Presumably, this was on the basis of a treatment of this equation in isolation from the 

other two and replacing (Am)n+1 by u(Ap)n+1.  Then, of course, the amplification factor 
satisfies 

|K|
2
 - 1/(1 ♦ (uSAt/Ax)2) < 1 . (19) 
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But the coupling between the equations is important in the stability analysis and the correct 
result is not so easily obtained.  If all the equations are expanded as in (18), the resulting 
determinantal equation for K    when the donor-cell differencing of (18) is used, becomes very 
complicated; so we restrict our attention here to the special case in which Ap = c2Ap, when 

s 
only two equations have to be dealt with.  The equation for < then becomes, with X » At/Ax, 

det 
1 - 2Xus2 - K        -iXS 

iX(u2 - c2)S 1 - 2Xus2 - 2iXuS - K 
0 . (20) 

This yields K  
s 1 - 2Xus2 - ixS(u ± cg)  and hence the stability condition 

|K|
2
 » 1 - UXs2{u - X[u2s2 ♦ (u ± c )2c2]} < 1 if (u ♦ c )2X < u . 

s — n        — 

(21) 

When the central difference    AQ(Am)n    is used instead in equation  (18), the top left term in (20) 

becomes    1 - *    and the equation for    *    becomes 

(K -  l)2  ♦ 2U -  l)Xu(s2  +  iS)  +  X2S2(c2  -  u2)  » 0   . (22) 
s 

On the other hand when    AQ(Am) is used, the top right term is multiplied by    K    and we obtain 

U -  l)2  ♦ 2(K -  l)[Xu(s2  ♦  iS)  ♦   }X2S2(c2  -  u2)]   ♦ X2S2(c2  - u2)  - 0   . 
s s 

(23) 

The analysis of the stability conditions arising from these two equations is typical of the 
practical difficulties of applying fourier analysis to systems of equations.  One can, however, 
see immediately that the condition 

cs 1  u2 (2M 

is necessary to the stability of both equations:  for otherwise the sum of the arguments of the 
two roots for < - 1 is IT or 3«, while for stability the argument of each must lie in the 
open interval  U/2, 3w/2).  A complete analysis shows (22) to be stable if 2c (u ♦ c )X <^ u ^ c 

and (2M if 0 < UuX _< 2(u ♦ c )X < 1 or Xc < 2 if u = 0. 
s  -•        s •— 

3.  DISSIPATION, DISPERSION AND CONSERVATION 

Once the gross stability of the difference scheme has been assured, many other properties 
need to be considered, all to do with the relationship of the scheme to the differential equation: 
as we have seen even the consideration of strict stability requires this comparison to be made. 
The one possible exception to this statement is the property of dissipation.  This was first 
defined in terms of the growth factor of a single fourier mode, a scheme being termed dissipative 
if all the eigenvalues of the locally evaluated amplification matrix satisfy 

|K(X, k, Ax, At) | <_ 1 - o(KAx)2s ,     -» < Kix < i , (25) 

ft>r some constant o > 0 and some positive integer s.  Such a requirement was used by Kreiss [h] 
in his development of the stability theory of variable coefficient hyperbolic systems, the dissi- 
pation being small enough not to affect the truncation error of the schemes but sufficient to 
control the instabilities generated by the variable coefficients.  However, even earlier John 
[l2] used the same requirement on <    in demonstrating the stability of variable coefficient 
parabolic equations where, for small kAx,  the property arises immediately from the consistency 
of any difference scheme with a parabolic operator. 

Subsequently, many authors [l3] [l1*] [l5] [l6] carried out quantitative comparisons of the 
dissipation of various schemes as applied to simple model situations. Typically the advective 
equation,  u + au a 0,  is used and the damping compared for a range of mesh ratios aAt/Ax 

and for all modes spanning a reasonable number of mesh intervals, e.g. 2*/kAx > *•  At the same 
time the dispersion of the scheme may be studied by comparing arg < with the phase change 
kaAt ■ kAx(aAt/Ax)  produced by the differential equation in one time step.  Notice that these 
errors may be regarded as arising more or less directly from the fourier transform of the trunca- 
tion error defined in (3).  For, in that notation, but for a scalar variable, 

m ■ ikat ikx 
K ■ (1 - AtP )/(l ♦ AtP,) and substituting u » e   e    we have 

e-ikaAt _ K B (1 + atp^-^t.^E.) . (26) 

These studies clearly show, for example, the severe dissipation associated with the upwind 
differencing scheme, the dominant phase lag error in the Lax-Wendroff scheme and the attractive 
properties of the leap-frog scheme.  They have stimulated the development of more accurate one 
dimensional schemes of third and fourth order which are becoming increasingly important in 
praetical fluid flow calculations.  Apart from Fromm [15] , however, much less study has been 
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given to these phenomena in several dimensions and a good deal more probably remains to be 
learned this vay in that case. 

Though they provide important guide lines in the choice of methods, not all of the results of 
these studies of dissipation and dispersion can be immediately transferred to more realistic 
situations.  Moreover, the presence of non-linear terms requires a much greater choice of differ- 
ence scheue to be made;  for example, in equation (11) should one replace uu  by the difference 

UAOU as in (12a) or combine this in some way with  JA U2 as in (12b)?  Also, in a system of 

equations one has to make the choice of dependent variables and the mesh that each of them should 
be regarded as centred at.  However, the use of fourier modes is still helpful in analysing the 
errors involved and, in particular, the phenomenon of aliasing, i.e. the tendency of a finite grid 
representation to confuse the modes created by non-linear interactions. 

Suppose that over a grid of 2J ♦ 1 equally spaced points, mesh functions  u and v are 
expanded as 

u.      M JkjAx      „ m  v  * ^ikJAx 
J *(k)V    ■    j  Mk)V    " [21} 

where the sums run over kAx ■ 0, ±w/J, ±2w/J, ..., ±(J - l)w/J, ±*.  Now if u and v were 
considered as continuous functions of the continuous variable x ■ jAx and substituted 
into (uv)„t we get 

ilx (uv)x "Scot1 I ,  *Vk«3«     - (28) 
x
   m  k+k'»l K K 

where  lAx may now span  (-2w, 2*).  The higher frequencies are unrepresentable on the mesh and 
when a mesh approximation to vu  is calculated they appear, shifted by 2ir,  in the original 

frequency range; this is aliasing.  Thus we get the following if we substitute the mesh 
functions into (uA v ♦ VA u)/Ax 

o    o 

u.A v.   ♦ V.A u. 
r1/.^    IrAv    *    <^„    W«Av^n    C    .I.1*«)0* J  ° J   Ax 

J   ° J  -  IUJM     ,   (Ax^tsin kAx ♦  sin k «Ax^v^e1 

k+k,=t±2it/Ax (29) 

By comparing the coefficients of u, V ,  in the two expansions, one may obtain very detailed 

information on the errors arising from the aliasing and the finite difference operators.  This 
has been done for a number of approximations to the shallow water equations in two dimensions by 
Grammeltvedt [IT] . 

Apart from its handling of fourier modes, the other broad area in which a difference scheme 
is compared with its differential system concerns its conservation properties.  The equations of 
fluid flow are basically conservation equations for mass, momentum and energy.  If they are 
written in this conservation form, w^ ♦ V.f(w) = 0, before derivatives are replaced by divided 

differences then when a sum is taken over all the mesh points the differences cancel except at 
the boundaries and the conservation properties are correctly modelled by the mesh sums of the 
variables.  This often gives improved accuracy, especially in situations like shocked flows 
where the integral conservation laws are very important, and there is some indication that con- 
servation of the lower velocity moments is most important:  thus one should always aim to con- 
serve mass, while the total energy may not be an appropriate variable to work with. 

More generally, one may attempt to model any conservation property of the differential 
system involving functions of the dependent variables [9].  Most coamonly these are quadratic 
functions representing energy or vorticity squared as in the well-known schemes of Arakawa [8]. 
While fourier analysis is essentially a means of analysing a scheme once it has been proposed, 
these conservation arguments are key elements in motivating the design of new schemes. 

A general technique for carrying out this process consists of first writing out the details 
of the manipulation of the differential equation leading to the establishment of the conserva- 
tion property.  Then difference replacements are made for all the differential operators in 
such a way that the identities used are carried over into their discrete counterparts.  The 
essential operation is usually integration-by-parts or use of Gauss' Theorem and the difference 
operators are therefore chosen to satisfy summation-by-parts formulae.  Consider the simple 
advection equation (11).  Premultiplication by u and integration with respect to x leads to 

i-||u||2 - -<u, uux> - <}(u
2)x, u> . 

Hence the correct combination of the equivalent forms uu  and s(u2)  leads to 

^| |u||2 - -icUf uux+ (u
2)x> « 0 , (30) 

and the adoption of the energy conserving scheme (12b) for this equation.  Useful basic differ- 
ence operators in these manipulations are the central difference 6 and average y:  6 has 
adjoint -6 and u  is self-adjoint with respect to an inner product <u, v> in which each 
argument is on a mesh staggered half a step with respect to the other.  In one dimension this 
usually means that u and 6    appear in the combination u6 « A  as in (12b) so that only one 

mesh is involved.  But in two dimensions it is often a great advantage to replace 3/3x by 
u 6  and 3/3y by u 6  and use one mesh consisting of the centres of the squares formed by 
y * x y 
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the other - see Morton [lö] . 

Grammeltvedt*s [l?] paper is largely devoted to a study of the advantages of these con- 
servation properties.  Broadly, he finds that the quadratically conserving or energy conserv- 
ing schemes are more stable but increased stability is to some extent paid for by worse phase 
errors.  See also Koache [19] for further references to studies of these and other phenomena. 
It is worth noting that Torrance et al [20] found that conservation was a more important 
property than the order of accuracy of the truncation error. 

k.     THE MODIFIED EQUATION APPROACH 

We have shown in the previous two sections the need to study truncation error and accuracy 
in conjunction with stability.  The tendency to separate the two aspects arose essentially from 
the Lax-Richtmyer theory of stability and convergence and an alternative approach, based on the 
"modified equation", has recently attracted increased attention.  The technique is usually 
attributed to Hirt [ll] but similar ideas have been widely used (see, e.g. Ref. [2] pp. 331-2). 
It has been put on a more methodical basis by Warming and Hyett [2l], who considered linear 
equations and compared the approach to the L-R theory in a number of model problems. 

More generally, let us write the (non-linear) differential and difference equations for 
u and U respectively as 

L(u) « 0 ,    LAU)  » 0 . (31) & 
Then the L-R theory defines the truncation error T (u)  by substitution of u into the differ- 

ence scheme, evaluates it by Taylor expansion and considers 

LA(u) - LÄ(U) « TA(u) (32) 

as an equation for u - U :  the homogeneous equation is used to study stability and the inhomo- 
geneous equation to study accuracy and convergence.  The alternative approach is to extend U 
to be a function with an infinite Taylor series expansion and to find a modified differential 
equation which it satisfies, by substitution of this expansion into the difference scheme. 
Corresponding to (32), we obtain 

L(u) - L(U) ■ T(U) (33) 

as the main object of study.  Note that before any manipulations are made to simplify 
T (u)  and T(U)  they are formally identical expressions 

TA(u) i LA(u) - L(u) ,    T(U) = LA(U) - L(U) . (3*) 

However, in the L-R theory the equation L(u) a 0 must be used to simplify T (u), while in 

the modified equation approach the equation L (U) = 0,  or equivalently L(U) ♦ T(U) = 0, must 

be used to obtain an equation of the form required. 

The immediate advantage of using (33) is that one is working with differential rather than 
difference operators:  this is convenient with linear equations but the advantage becomes 
progressively greater as one considers first linear perturbations of a non-linear equation and 
then the full non-linear equation.   Consider the linear equation u ♦ Pu s 0.  This leads to 

a well-posed initial-value problem if P is semi-bounded, that is,  <u, Pu> >  -a||u||2  for 
some o > 0,  for then  ||u||2 can only grow like eat.  Hence when the stability of the 
difference scheme is considered with the equation U ♦ PU ♦ T(U) ■ 0,  establishment of 

<T(U), U> ^.-ß||u||2 will yield stability. Moreover, some of this approach can be extended 
to non-linear equations: if <P(u) - P(U), u - U> >^ —<s | |u - U||2, P is called monotone and 
leads to a well-posed problem. As an example, let us return to the advective equation (11). 
With E * u - U we have 

^-||c||2 ♦ 5<u - U, (u2)x - (U
2)x> - <c, T(U)> , 

1,e* -f^-l le I I2 ♦ i<c2, (u ♦ U)x> = <e, T(U)> (35) 

after two integrations by parts.  The inner product on the left is positive definite when 
(u * U)  > 0 everywhere so that the operator P is monotone then, expressing the fact that 

the advection equation (11) is well-posed for rarefaction waves.  For the non-linear stability 
of a difference scheme one needs to study the monotonicity of T(U)  and, for convergence, the 
inner product  <u - U, T(U)>:  for scheme (12a) the coefficient of  (Ax)2/6 in T(U)  is 
-UU    while for (12b) it is -(UU   ♦ 2U U  );  thus the fact that the inner product of U 

with the second expression is obviously zero, while not that with the first, is encouraging 
though the details of the implication have yet to be established. 

However, greatest use of the modified equations has so far been made to study dissipation 
and dispersion properties and to obtain "heuristic" stability criteria.  For linear equations, 
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Warming and Hyett advocate the systematic replacement of all time differentials in the expression 
for T(U).  Thus for ut ♦ Pu « 0,  a difference scheme will give Ut ♦ PU ♦ T(U) ■ 0 and 

repeated substitution of this and its derivatives to eliminate all time derivatives in T(U) 
yields the form 

Ut ♦ PU « QU , (36) 

where both P and Q are space differential operators:  Q win be an infinite power series in 
At, Ax and, for instance, for the Lax-Wendroff scheme in one dimension applied to the model 
problem u. ♦ au =0 

QU S - f [(Ax)2 - a2(At)2]uxxx - |i At[(Ax)2 - a2 (At )2] u^^ ♦ 

(37) 

From the leading even order derivative one obtains the heuristic stability condition  |a|At <_ Ax 
by requiring that this term should not give negative dissipation, i.e. lead to ill-posedness of 
the solution.  Similarly, the leading odd order derivative gives some measure of the dispersion 
in the scheme.  Note that the leading few terms in Q are the same as if U. + PU » 0 were used 

to carry out the substitution for the time differentials: thus these will be the same as in a 
conventional approach but beyond a number of terms, determined by the order of accuracy of the 
scheme, differences will occur. 

Hirt [ll] in the same way obtains the left inequality in the condition (10) needed to obviate 
the weak instability in the mixed advection and diffusion equation (5) approximated by (6).  How- 
ever, in general, complete stability conditions cannot be obtained by looking at the leading term 
in QU,  and the whole series must be considered.  Warming and Hyett overcome this to some extent 

by appealing to the form of the fourier transform Q of Q regarded as a function of 
s « sin skAx.  But then, as they point out, this amounts to considering the amplification factor 
of the L-H theory and their analysis could be just as readily applied to that. 

It would seem that with this approach one should not try to follow the analysis of the L-H 
theory but instead exploit the differential equation theory at one's disposal.  Thus in consider- 
ing problem (5), (6) Hirt did not immediately eliminate the time differentials:  his leading terms 

in T(U) then gave him a hyperbolic equation with a wave speed of (2b/At)' and use of the 
Courant-Friedrichs-Lewy condition on that yielded the second part of the inequality in (10).  In 
the same paper he studied the terms in T(U)  up to fourth order for the difference scheme (lM- 
(lo) and various replacements for (lM:  the instabilities found in numerical experiments were 
then attributed to various differences in these terms between the schemes.  Similarly, Lerat 
and Peyret [22]   have studied a general class of predictor-corrector methods for the gas dynamic 
equations which generalise the two-step Lax-Wendroff scheme.  They obtained the leading terms in 
T(U)  and then compared their dissipative and dispersive effects along the characteristics of 
the original equations.   In this way they were able to make specific choices of •best* schemes 
for particular problems, the validity of which was confirmed by numerical experiment. 

5.  BOUNDARY CONDITIONS 

In the foregoing we have ignored all effects of boundaries in order to keep the arguments as 
simple as possible.  but in practice the best treatment of boundary conditions is one of the more 
difficult judgements to make and a poor choice can lead to inaccuracies and instabilities.  The 
difficulties start with the differential equations where the proper boundary conditions are still 
not always known:  recent advances here have been made by H.O. Kreiss who will be speaking on this 
topic, and the associated results for difference schemes, in this lecture series.  The problem is 
compounded in the difference schemes where quite often extra boundary conditions are needed 
because the schemes are of higher order than the differential equation, e.g. in the use of the 

•endroff or leap-frog methods for a first order hyparbolic equation. 

Understanding of the resulting effects is again most completely achieved by a modal analysis 
like the fourier analysis used in the interior.  Godunov and Hyabenkii [23] first gave necessary 

stability conditions for one-dimensional problems by considering modes of the form u. *" icnu , 

where  |u| < 1 and j  counts mesh points away from the boundary.  Kreiss [21*]  has greatly 
refined the approach giving only mildly stricter conditions which are sufficient for stability 
and recently has achieved the major step of extending the theory to plane boundaries in multi- 
dimensional problems.  However, as might be expected, the analysis is in general even more awe- 
some than that for the interior although some important simple cases have now been studied in 
detail [25].  Moreover, in practical problems curved and angled boundaries provide much of tne 
interest as well as raising many more problems regarding how they should be approximated.  lnus 
one looks to carefully controlled numerical experiments for information on the stability anJ 
accuracy of boundary approximations*  Abbet [?b]  has studied the behaviour of some twenty-five 
schemes as applied to supersonic steady flows and Chu and Sereny [27J have conducted similar 
experiments in one-dimensional time-dependent flows.   (See Roache [19] for further references.) 
The conclusion is overwhelming, tho'igh not of course unexpected, that due account should be 
taken of the characteristics of the differential system and the combinations of dependent 
variables carried along them.  Full use of the characteristics entails calculating all those 
carrying information to or from the boundary and using interpolation on the mesh to approximate 
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their effect.  To do this explicitly can be a lengthy procedure which is why simpler methods are 
called for; however, it seems from Abbet's results that the performance of a method is heavily 
dependent on how closely it is related to this basic procedure.  Apart from this, both papers 
find that simple extrapolation performs reasonably well in most cases and much better than 
formally more accurate extrapolation methods.  It is also noteworthy then that a new method 
which Abbet proposes and which is both accurate and fast combines an explicit extrapolating 
predictor step with a simple wave corrector step. 

Chu and Sereny attempt to correlate their results by reference to a simple analytical test 
similar to those of dispersion and dissipation discussed earlier for the interior schemes. 
Slightly modified and applied to the wave equation 

u ♦ v =0    r = u + v = const,  on t - x = const, 
t x 

v «• u »0    s = u - v = const,  on t ♦ x ■ const, 
t x 

(38) 

it consists of reflecting the plane wave s = - exp[ik(t + x)]  at the boundary  x = 0, where 
the condition u = 0 is imposed.  Assuming that up to t ■ 0, the correct reflected wave 
r = exp[ik(t - x)*]  has been produced, we calculate r1, the reflected wave at x « 0, t » At 

produced by the scheme under test and compare it with e   .  For three typical simple schemes 
for imposing a boundary condition on v  when the Lax-Wendroff method is used in the interior, 
one has the following results. 

Scheme 

Exact 

Characteristic method 

One-sided first order: 
vn+1-vn      u"-un 

o        o .     1    o 
Bt .'.X 

First order extrapolation:     VQ = v 

r] 
o 

ikfit 

1 - X  ♦  XeikAX 

1 «•   iXS 

0 ♦ ixs[x ♦ U - JOC] 

This shows clearly the origin of the overshooting experienced with the one-sided scheme and the 
attractions of the extrapolation procedure - while never amplified, for X » 1 it is exact, 
like the characteristic method. 

Besides the use of characteristics, analytical guide lines on the choice of boundary condi- 
tions are obtained by consideration of conservation properties. When the equations are differ- 
enced in conservation form using a "control volume" or "donor-cell" technique, the layout of 
variables on the mesh and the imposition of boundary conditions becomes strongly motivated - see 
Hoache [19] for many examples. As a simple case, suppose that 3f(u)/dx in a conservation law 
is being approximated:  if a one-sided difference  (f- + -i - f-)/Ax is used the boundary terms 

will be  f., f  and physical boundary conditions should be imposed at mesh points;  but if the 

central difference A f•  is used boundary terms will be (fj ♦ fj.i)/?, (fQ ♦ t^/Z    and the 

conditions imposed at the mid-points.  Further guidance, particularly for non-physical boundary 
conditions, comes when conservation of quadratic quantities is attempted:  the summation-by- 
parts manipulations entailed in establishing conservation lead to specific boundary terms whose 
behaviour must be controlled by imposition of appropriate boundary conditions. 

6.  ERROR ANALYSIS IN EVOLUTIONARY FINITE ELEMENT PROBLEMS 

Finite element methods are becoming increasingly popular for fluid flow problems [28] . 
Their behaviour in steady state situations is now well understood but, for evolutionary problems, 
optimal procedures and their analysis are only beginning to be developed.  We conclude then with 
an analysis of the errors induced by approximating the non-linear term u3v/3x in various ways, 
as developed by Cullen [?9, 3ü] for integration of the shallow water equations. 

Suppose the solution u of u = Lu, u(t » 

space S ,  spanned by the basis functions *.(x! 
J 

0) = u  is to be approximated by U from a 

, i.e. 

Un(x) = Ifj)^*).    n = 0, 1, 2, ... (39) 

approximates u(x, nnt).  Introduce the projection operator P from the solution space into 

<Pu>L)-I(.)VjL) <Pu. V <u, ♦•,>,* fc • (fco) 

Then the generation of U  can be considered in three parts:  first the initial data is approx- 

imated in S  by U° s Pu°;  then the spacial operator L is approximated by an operator 
*"   h    h 
L : S -*■  S ; and thirdly the time integration is approximated by an appropriate quadrature 
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formula.  Standard practice is to take  L = PL,  so that if the leap-frog method is used we 
obtain 

(2At)'1(Un+1 - U""1) - PLUn, 

iPAtr^dj"*1 - Un_1) = KUn , MU 

Pu 

{<u , *j>) , 

(M) 

(*2> 

where we denote by U_    the vector  {U.}  and M and K are the mass and stiffness matrices 
J 

The errors committed in the approximation can be distinguished in a corresponding manner. 
The last, a simple quadrature error, will be set aside for this discussion.  Then, using an 
Luler method integration with a sufficiently small time step, the true solution at time nAt 

is eiven by u(nAt) ■ (I ♦ At L)n u°, while the approximation is given by 

Un - (I ♦ AtL)n Pu° . 

Writing A for I ♦ AtL and B for I ♦ atL, the difference can be resolved as 

(An - BnP)u° - {(An - PAn) ♦ (PA - BPJA0"1 ♦ B(PA - BP)An"2 ♦ ... 

n"?(PA - BP)A ♦ Bn"1(PA - BP)}u° . 

That is, 

n"1      - n * 1 
u(nAt) - Un » (I - P)u(nAt) ♦ At [ II ♦ AtL)    X(PL - LP)u(sAt) . 

s*0 
(l»3) 

Thus the error is made up of a final projection error ana an accumulated evolutionary error. 

The former is estimated by straightforward approximation theory - if Sh contains all polynomials 

of degree up to (w - 1),  then in general the error will be 0(hV).  The latter is the key 
object of our analysis and can be helpfully visualised as the difference between the two routes in 
the diagram: 

u 

ILdt <' 

P 
Pu 

*r   ILdt 

LPudt 

Ludt - 
P 

PLuflt. 

If L is an operator of order m,  the usual error estimate for (PL - LP)u will be 0(hu~ ). 

But for some choices of S  and L it can be as small as 0(h U) - see Thomee [3l] , Wendroff 
[32] and Cullen [io] . 

Suppose L £ 3/3x and a uniform mesh is used with spline functions of order y  as basis 
functions (that is, piecewise polynomials of decree u - 1 with continuous derivatives up to 
order u - 2).  Then Thomfce showed that the nodal parameters U.  are related by what can be 

regarded as a finite difference formula and that its truncation error was 0(h  ).  Cullen 
identified this as the error  (PL - PLP)u and thus *as able to obtain the same result for a 
wider class of differential equations, including non-linear ones. 

Special interest attaches to the care of linear splines  (u ■ ?).  Because of the uniform 

mesh, fourier analysis nay be used so we take u = ue 
♦,(x) ■ ♦(x/h - j)  and 

lkx Then we have in {k0) 

!1 ♦ x,    -1 < x <_ ü 

1 - x,     0 < x < 1 , 

U(x/h - j)elkxdx » heX^%(C), where (.  = kh. 

<M0 

ikx 

Hence, using the familiar mass matrix for linear elements, the nodal parameters u.  satisfy 
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^Uj-1 * ^. *  u.+1) = hue
1J^U) . tU5) 

giving u. ■ uo(c)exp(i,iC), where a(£j = 3^U)/(2 ♦ cos C).  A simple computation givps 

♦ (5) ■ (^C"1 sin JO2 so that 

When L 5 3/3x, Lu = iku so we have immediately 

PLu = UuftCg) Im^SjU) • 

The familiar Galerkin equations for v = PL(Pu) give 

(1*7) 

>Vi * UY3 + Vi} * >X 2 "^ (U8) 

whence    v.  = ikß(^)u.     and 

»W-rli^JEl-   ^JTO     "      <*°   " (U9) 
5(2 ♦  cos  ^) "  1Ö0 

Thus we have 

PLPu = ikua(OßU)  £(j)e
1J^(x) (50) 

and comparison with (1*7) shows the error to be 0(£**) = 0(h**).  Notice how the 0(h2)  error 
arising from the projection, and expressed by the difference of a(0  from unity, is eliminated 
as a common factor:  the crucial error, expressed by the difference of 8(C)  from unity, could 
have been calculated simply from the finite difference equation (1*8). 

Now consider the problem when Lu = u3u/3x.  The usual Galerkin approach essentially 
approximates the equation v = u3u/3x for the time derivative in one step by substituting 
u = £u<fc.  into both parts of the product.  In experiments on the shallow water equations with 
linear elements, Cullen found the accuracy most disappointing.  The trouble is that the deriva- 
tive of the linear approximation is piecewise constant and not even in the space S ,  let alone 

being the best approximation in S .  The solution was to solve the equation in two parts, 

* - H •    w = uv (51) 

using Galerkin at each stage separately.  Thus L 3 L-L.. where L.  represents calculation 

of the derivative and L? the product with u.  This is replaced by L = L_(PL.),  so we have 

PLu - LPu = [PL2(L1u) - LgPU^u)] + [^(PI^u) - L^PL^u)] ,    (52) 

the non-linearity of the operator L_L. preventing common factors from being separated out.  It 

is clear, however, that carrying out the product operation to l*th order will give an overall 
Uth order evolutionary error. 

An analysis of three ways of constructing approximations to u3v/3x using linear elements 

and with u = u exp(i£x/h), v = v exp(inx/h) yields the following results:  as with (1*7) we have 

P(uj£) = uv(in/h)aU ♦ n) I .eiJU+n)*,(x) . (53) 

(i)  Single stage Galerkin    results  in  an extra fact»r 

aUMrOljSin  n + -^sin(£+n)  - ^sin  £j 
YlU,n) = 2n[l - cos(5+n)]/(C*n)2 

i.e.    YlU,n) ~ 1 ♦  (2C3n - 7£2n2 - 8i-n3 - V)/720, (5U) 

which reduces to    1 - 17Cl*/720    when    ( » tu 

(ii)   Two stage Galerkin     has  an  extra  factor 

[5 + -g(cos £ + cos n ♦ cos(£+n))] 

y2(C,n) ■ a(0«(n)ß(n) 2[x . cosU+n)]/U+n)*  

i.e.    y2(C,n)-' 1 ♦  (2£3n ♦  352n2 ♦ 2£n3 - V»)/720, (55) 

reducing to    1 -  3C**/720    when    £ ■ ij. 
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Uü) Galerkin followed by nodal point multiplication has the corresponding factor 

70$    >-*&• <*> 
The last is very easy to implement but is only 2nd order accurate and very poor in practice. 

Both of the others are Uth order and although the coefficients in (5*0 and (55) do not seem very 
different, presumably the factor of nearly six improvement in the two-stage process when £ * n 
is the basis of its superior performance in practice when used on u.Vu. 

REFERENCES 

1. Lax, P.D. and R.D. Richtmyer.  "Survey of the stability of finite difference equations." 
Comm. Pure Appl. Math. 9, 1956, p.267. 

2. Richtmyer, R.D. and K.W. Morton.  Difference methods for initial-value problems.  New York, 
Interscience, 1967. 

3. Kxeiss, H.O.  "Ober die StabilitMtsdefinition für Differenzen gleichungen die partielle 
Differentialgleichungen approximieren."  Nordisk Tidske.  Informations-behandling 2, 
1962, p.153. 

k.  Kreiss, H.O.  "On difference approximations of the dissipative type for hyperbolic differential 
equations."  Comm. Pure Appl. Math. 17, 196*4, p.335. 

5. Strang, W.G.  "Accurate partial difference methods II: non-linear problems."  Numer. Math. 
6, 1961*. p.37. 

6. Kreiss, H.O. and J. Öliger.  "Methods for the approximate solution of time dependent problems." 
CARP Publications Series No. 10. 1973. 

7. Philips, N.A.  "An example of non-linear computational instability."  The Atmosphere and the 
Sea in Motion.  Bert Bolin, ed., Rockefeller Institute Press, New York, 1959, p.501. 

8. Arakawa, A.  "Computational design of long-term numerical integration of the equations of fluid 
motion: I.  Two-dimensional incompressible flow."  J. Comp. Phys. 1_, 1966, p.119. 

9. Morton, K.W.  "The design of difference schemes for evolutionary problems."  Numerical Solu- 
tion of Field Problems in Continuum Physics, SIAM-AMS Proc. 2, Amer. Math. Soc, 1970, p.l. 

10. Kreiss, H.O. and J. Öliger. "Comparison of accurate methods for the integration of hyperbolic 
equations."  Tellus 2k, 1972, p.199. 

11. Hirt, C.W.  "Heuristic stability theory for finite-difference equations."  J. Comp. Phys. 2_, 
1968, p.339. 

12. John, F.  "On the integration of parabolic equations by difference methods."  Comm. Pure 
Appl. Math. £, 1952, p.155. 

13. Roberts, K.V. and N.O. Weiss. "Convective difference schemes."  Math. Comp. 20, 1966, p.272. 

Ik,  Fromm, J.E.  "A method for reducing dispersion in convective difference schemes."  J. Comp. 
Phys. 2*  I960, p.176. 

15. Fromm, J.E.  "Practical investigation of convective difference approximations of reduced 
dispersion."  Phys. Fluids Suppl. II. Amer. Inst. Phys., New York, 1969, p.3. 

16. Morton, K.W.  "Stability and convergence in fluid flow problems."  Proc. Roy. Soc. A323, 
1971, p.237. 

17. Grammeltvedt, A.  "A survey of finite difference schemes for the primitive equations of a 
barotropic fluid."  Mon. Wea. Rev. 9J, 1969, P.38U. 

lb. Morton, K.W.  "The design of difference schemes for studying physical instabilities." 
Proc. Conf. on Numerical Solutions of Differential Equations. J.L. Morris, ed., Springer- 
Verlag, Berlin, 1973, p. 

19. Roache, J.  Computational Fluid Dynamics, Albuquerque, New Mexico, Hermosa Publishing Co., 1972 

20. Torrance, K., R. Davis, K. Eike, P. Gill, D. Gutman, A. Hsui, S. Lyons and H. Zien.  "Cavity 
flows driven by buoyancy and shear."  J. Fluid Mech. 51, Pt. 2, 1972, p.221. 

21. Warming, R.F. and B.J. Hyett.  "The modified equation approach to the stability and accuracy 
analysis of finite-difference methods."  J. Comp. Phys. lkt   1971*, p.159. 

22. Lerat, A. and R. Peyret.  "The problem of spurious oscillations in the numerical solution of 
the equations of gas dynamics."  To appear in Proc. Uth Intl. Conf. on Numerical Methods 
in Fluid Dynamics, 1971*. 



23. Godunov, S.K. and V.S. Ryabenkii.  Introduction to the theory of difference schemes.  Inter- 
science, New York, 196U. 

2k.  Kreiss, H.O.  "Stability theory for difference approximations of mixed initial boundary-value 
problems I."  Math. Comp. 22, 1968, p.703. 

25. Gustafson, B., H.O. Kreiss and A. Sundstrom.  "Stability theory of difference approximations 
for mixed initial boundary-value problems II."  Math. Comp. 26, 1972, P.6U9. 

26. Abbet, M. "Boundary conditions and computational procedures for inviscid supersonic steady 
flow field calculations."  Aero Therm Heport 71-Ul. 1971. 

27. Chu, C.K. and A. Sereny.  "Boundary conditions in finite difference fluid dynamic codes." 
J. Comp. Phys. 15_, 197»*, p.555. 

28. Oden, J.T., O.C. Zienkiewicz, R.H. Gallagher and C. Taylor, eds.  Finite Element Methods in 
Flow Problems, Univ. of Alabama, Huntsville Press, 1971*. 

29. Cullen, M.J.P.  "A finite element method for a non-linear initial-value problem."  J. Inst. 
Maths. Applies. 13, 1971*, p.233. 

30. Cullen, M.J.P.  "Convergence estimates for the finite element method in evolutionary problems." 
Submitted to Numer. Math. 

31. Thomee, V.  "Spline Galerkin methods for initial-value problems with constant coefficients." 
Lecture Notes in Mathematics No. 3b3, Springer-Verlag, Berlin, 1973, p.lbfc. 

32. Wendroff, B.  "Spline Galerkin methods for initial-value problems with variable coefficients." 
Ibid. p.189. 

ACKNOWLEDGEMENT 

These lectures were written while the author was Visiting Professor at Columbia University, 
New York.  He is grateful to the Department of Mechanical Engineering for their hospitality and 
particularly to Professor C.K. Chu for numerous discussions on the subject of the lectures. 



6-1 

NUMERICAL  SOLUTION  OF  THE   NAVIER-STOKES   EQUATIONS 

FOR  COMPRESSIBLE   FLUIDS 

Roger PEYRET 

CNRS.   Institut  de   Mecamque   tMoriqua  at  applique«.   University  PARIS   VI 

Collaborate extirtaur  da I'ONERA 

Henri  VIVIAND 

Oflica National d'Etudm  at da  Racharchas Atrotpatialas  (ONSRA) 

92320 CHAT ILL ON      Franca 

Summary 

Numerical methods for the solution of the Navier-Stokes equations 

for compressible fluids are discussed. A short review of the Navier-Stokes 

equations and of their qualitative mathematical properties, and a discus- 

sion of their interest in aerodynamics problems are first presented. Then 

the following aspects of numerical methods are considered : limitation 

of the domain of calculation and boundary conditions on the outer 

boundary; various approaches in finite-difference methods and properties 

of some representative schemes; treatment of the boundary condition at 

a solid wall; treatment of shock waves and general considerations on 

accuracy and computation times. 

1. Introduction 

The considerable development of numerical methods in aerodynamics 

in the past twenty years has mostly concerned boundary layer problems 

and inviscid flow problems, that is to say the two fundamental approxi- 

mations of fluid mechanics for the description of large Reynolds number 

flows. As numerical methods became currently used for these two classes 

of flows, and as problems of increasing complexity were considered, a 

greater attention was given to the shortcomings of these approximations. 

The numerical solution of the full Navier-Stokes equations is now taken 

into consideration as a means of predicting flow fields for problems of 

practical interest, although it is obviously too costly at this time to be 

accepted as an engineer's tool. 

Besides early fundamental work on Burgers equation, one-dimen- 

sional flows and low Reynolds number flows, the first applications of 

numerical methods to the Navier-Stokes equations for compressible flows 

seem to have been motivated by atmospheric reentry problems, i.e. 

essentially the blunt body problem and the base flow problem, which 

involve low density, moderate Reynolds number flows. Progress in nume- 

rical analysis and in computer performances allowed the computation of 

flows at increasing Reynolds numbers, and the most recent studies are 

concerned with such difficult problems as shock-boundary layer interaction 

in the turbulent regime. 

The purpose of this paper is to discuss the problems arising in the 

numerical solution of the Navier-Stokes equations for compressible fluids 

and to present some of the numerical schemes used. We shall consider 

only finite-difference methods based on the unsteady equations of motion, 

which, at this time, are the most currently used. It is also for this class 

of methods that the difference between the compressible and the incom- 

pressible cases is the most marked because of the different nature of 

the continuity equation in the two cases. 

After a short review of the Navier-Stokes equations and of their 

qualitative mathematical properties in section 2, the interest of these 

equations for aerodynamics is discussed in section 3. The problem of the 

definition of the computation domain is considered in section 4. Various 

representative finite-difference schemes are presented in section 5, and the 

problems of the numerical treatments of boundary conditions at a wall 

and of shock waves are considered in sections 6 and 7 respectively. 

Some questions relating to accuracy and computer time are discussed 

in section 8, and a list of works grouped according to different types 

of problems is given in section 9. 

2. The Navier-Stokes equations 

The general motion of a non reacting fluid with respect to a 

Galilean frame of reference is governed by the following partial diffe- 

rential equations which express the fundamental principles of classical 

mechanics and thermodynamics for mass conservation (eq. 2.1), momen- 

tum change (eq. 2.2) and energy change (eq. 2.3) in a continuous 

medium : 

(2.1) *L * div (?V)*0 
dt 

(2.2) -L(f7)t*,(tW-r)m £ 
dt 

(2.3) *(fE)t*(eEV-r7t j). fe.i. 
tfC 

In these equations, t is the time, p  the density,  V the fluid 

velocity, and  E   the total specific energy :      £ * e *   V*/2 where 

t    is the specific internal energy;   £T   is the stress tensor,  'S is the 

heat flux vector, and L is the external force per unit volume. 

Equations (2.1) to (23) are said to correspond to the Eulerian 

description of the fluid motion : flow properties are defined as functions 

of time and of space coordinates in the frame of reference. An alterna- 

tive description is provided by the Lagrangian formulation in which one 

considers properties of fluid particles followed in their motion : flow 

properties are defined as functions of time and of parameters used to 

identify fluid particles (usually the coordinates of the particle at some 

initial time). The Lagrangian formulation can be useful for particular 

problems, especially those involving interfaces; however it is not so 

widely used as the Eulerian formulation and it will not be considered 

here. 

To close the system of equations (2.1) to (23). one must add 

constitutive relationships for the stress tensor  <T  and for the heat flux 

vector   ii    . Usual fluids, such as air and water, in ordinary conditions 

follow Fourier's heat conduction law for 0   and Newton's law (or Navier- 

Stokes'law) for   £"   : 

(2.4) 

(2.5) 

2"  a  - fl I t  £ 1 /  -   unit tensor) 

Z  - r\&V1+A defV     (j*fVmp*JV+(p*o'V)T) 
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where T is the absolute temperature and ft   is the pressure; A is the 

thermal conductivity coefficient, and X    and^  are the two coefficients 

of viscosity. 

Fluids which follow Fourier's law and Newton's law are said to 

be Newtonian; the Navier Stokes" equations are the general equations of 

motion for Newtonian fluids, i.e. equations (2.1) to (2.5). These equations 

must be complemented by thermodynamic relations connecting the ther- 

modynamic variables, p , e, T and   A   . In the case of a simple fluid, 

the thermodynamic state of a fluid particle can be defined by the two 

variables p    and Q   . and all the thermodynamic properties of the fluid 

(assuming local thermodynamic equilibrium) can be deduced from a 

single fundamental relation such as : 

where   S    is the specific entropy. In particular the pressure  % and 

the temperature   T   can be calculated in terms of   p   and C : 

(2.6) ft = /i (e,e)    , r. T(i,r). 
A particular, but important, case is that of a perfect gas with 

constant specific heats, for which (2.6) is ; 

(2.7) fi, fy-fje*    ,  *- c9r 

where j( m J£-        and     Ck t Cff     a« the specific heats. 

The viscosity and thermal conductivity coefficients depend on the 

local thermodynamic state; in usual conditions they depend only on the 

temperature : 

(2.8) i ,  i(T)   t    l**(T)    ,   fi*p(T). 

It can be shown from the second law of thermodynamics that X 

and   u     must verify the following conditions : 

(2.9) 3/U 1 H  >,0 ;       ji ±0- 

In the absence of internal relaxation phenomena which would 

involve departure from local thermodynamic equilibrium. Stokes' relation 

is considered to hold : 

(2.10) 3A f. 2A   •   0. 

The system of equations (2.1) to (2.10) is then closed, in the 

sense that there are as many equations as unknowns. The basic unknowns, 

in terms of which all other dependent variables can be expressed, are 

p    , pi/ (or 1 ), and f £ (or   £   , or c   ). Note that this system is 

in the normal form with respect to time, i.e. the time derivatives of 

the basic unknowns are explicitly given in terms of their spatial deri- 

vatives. Another feature of equations (2.1) to (2.3) is their divergence, 

or conservative, form which results directly from the application of the 

fundamental conservation laws to a finite fluid system. 

The unsteady compressible N.S. equations are of hybrid parabolic- 

hyperbolic type, while in the steady state they are of elliptic-hyperbolic 

type. To let the nature of these equations show up, we develop the 

space derivatives of highest order (i.e. second order). The momentum 

equation, neglecting external forces, can be written : 

(2.11) tKifvljl.A'fTjfrVjmJTtXMsriT *fv + X7 

where <i    is a second-order differential operator : 

e/7 m/LM * (A iAJ pd (4* 7) 

and where     D/Ot  *    ^/dt * V f*f        '* the material derivative. It 

is easily verified that the operator %.    is elliptic except if   X * ZJL* 0 

but from conditions (2.9),   X + Z/L     must be positive. Equation (2.11) 

for the unknown    V    is parabolic with respect to time. Similarly, the 

energy equation expressed in terms of    T    instead of   £  , assuming 

a perfect gas with constant specific heats, becomes : 

(2.12) eCr — + ?<**? ■ $* H(r)(^T)x t 4 AT 

and   it is parabolic with respect to time.   £    is the dissipation function 

(2.13)       #.   Z.f*l7 - Al^FA  LjL^V.dtfV. 

Note also that the left-hand side of (2.12) is equal to  pT OS 

where   >5   is the specific entropy. 

Expressions (2.11) and (2.12) of the momentum and energy 

equations show that these equations are quasi-linear, i.e. they are linear 

with respect to the second order derivatives of /  and  T respectively. 

The continuity equation (2.1) can be written : 

(2.14) o_h , * v 0 

Considered as a first order equation for the unknown p , its 

characteristic base curves are the trajectories of fluid particles. 

Problems to be solved in practice are either mixed initial and 

boundary-value problems or time-independent boundary-value problems, 

and there does not seem to exist rigoutous mathematical results con- 

cerning the boundary conditions to impose in order to insure existence 

and unicity of the solution. One should resort to physical intuition and 

take into account the mathematical nature of the equations; the latter 

indicates that on any boundary one should be given one scalar condition 

for each scalar momentum equation and one condition for the energy 

equation; the simplest conditions are   V   and   T   given. An additional 

condition for  p    should be given only if the fluid enters the computa- 

tional domain through the boundary. 

The usual physical conditions on a solid impermeable wall for 

viscous fluids are that the relative velocity of the fluid with respect to 

the wall be zero and that the fluid and the wall be at the same tempe- 

rature. In general one considers either that the wall temperature  T¥ 

is given or that the heat flux at the wall, Qw  , is given; the boundary 

conditions are then : 

(2.15)    vt - 7- vm «o 

where    V„     is the velocity of a given material point of the wall, and 

1    r. ru 
(2.16)       (or 

I o   *T 
-It zJ- * a     ( = 0 for an adiabatic wall). 

On.      IW 

The above conditions must be modified in the so-called slip-flow 

regime when slight rarefaction effects come into play through the boun- 

dary conditions at the wall without invalidating the N.S. equations in 

the flow field; there exists then a tangential slip velocity and a tempe- 

rature jump at the wall, given by the kinetic theory of gases : 

(2.17) 
H T   d4 

Prandtl number) 

Hereafter we shall abbreviate «Navier-Stokes» by the initial* N.S. 

is  ■--'jr 
where    */d\     and    u/dS    are respectively the normal and tangential 

derivatives at the wall, /  is the molecular mean free path, a the sound 

speed;   Cf  ,    Cg   and   Cj     are dimensionless constants which depend 

on the laws of interaction of the molecules with the wall. Concerning 

the connection between the kinetic theory of gases and gas dynamics, 

one can consult, for example, ref. 11 ] and [2]. 

To close these general considerations, and for reference purposes, 

we consider the expressions of the N.S. equations a) in dimensionless 

vectorial form, and b) in dimensionless form in a cartesian coordinate 

system for two-dimensional flows. We neglect external forces and we 

assume a perfect gas with constant specific heats. 

a) The only characteristic quantities which need be used to define 

dimensionless variables are . 

a length   L   , a velocity    V   , a density p* . values ß* and   /   of 

the coefficients of viscosity and thermal conductivity. From these, other 

reference quantities are derived :    L / V* for the time   t  , p* V* for 

the pressure, and     /     for the total energy   £  and for the internal 

energy    e 
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Using the same notations as previously for the dimensionless 

variables, the equations (2.1) to (2.3) remain unchanged in dimension- 

less form. The constitutive relationships (2.4) and (2.5) become 

f-- i ?*it 
(2.22) f) - 

(2.18) 

where 

and ft. 

R<   Pt 

is a characteristic Reynolds number 

**v 

fj£**W% 
,*• ^ 

a  <>?   ^    * 
with 

r is a characteristic Prandti number. 

If a characteristic temperature    T    is used to define a dimension- 

less temperature  T , the laws of state (2.7) become : 

f- •  ( t'f ) ee (unchanged) 

(2.19) 

where 

e =  I .  T 
i(r-i)ir' 

«'-fr 

With Stokes' assumption      3 X *■ ZJL « tf    we have : 

Cxx*   j- /»  ( 2 3J- ~ y / 

J«   } * 

is a characteristic Mach number. 

If we choose      T*»   V* /Ct . we get simply   € « T . Other 

parameters will enter the problem through the boundary conditions (e.g. 

ratio of wall temperature to free-stream temperature) and also through 

the laws used for ^ (T) and  4 (T). 

b) The N.S. equations for two-dimensional flow can be written in a 

cartesian coordinate system (coordinates   x . u , velocity components 

u , if    ) in the following form : 

dt        dx       fo        %   \   dz       of   J 
where M .  F , & , Ff    and    £f   are 4-component vectors : the first 

components correspond to the continuity equation (2.1); the second 

and third components correspond to the projections of the momentum 

equation (2.2) on the x   and   V    axis respectively; and the fourth com- 

ponents yield the energy equation (2.3). 

(2.21)   ly7- 

e fu f» 

.. r. , e. 
fJlIT 

e* (ee*th lee*})* 

3. Interest of the Navier-Stokes equations 

To briefly discuss the practical interest of the N.S. equations in 

aerodynamics, it is convenient to distinguish between two broad classes 

of flow fields according to the order of magnitude of a characteristic 

Reynolds number. 

If the Reynolds number is large, the flow field is made up of 

regions which, to a great extent, can be described either by Euler's 

equations for inviscid flow, or by Prandtl's equations for boundary- 

layer flow. However the N.S. equations remain usually needed for the 

description of the flow in local zones where the above approcimations 

fail; the existence of such zones is the rule rather than the exception 

in the flow fields encountered in practice. These N.S. regions, although 

they may be of small extent, usually have an important influence over 

the complete flow, and they are an essential feature of the flow field 

for the determination of a unique solution. Figure 1 shows some classi- 

cal examples of N.S. regions imbedded in targe Reynolds number flows. 

Large Reynolds number flows are likely to be turbulent, and this 

is indeed the most usual case in aeronautical applications. The N.S. 

equations remain valid for turbulent flows, but the numerical prediction 

of such flows with existing methods and computers cannot be band 

on the computation of the turbulent fluctuations from the exact un- 

1 

a) Trailing edge flow'b)  Separation  bubblei c)   Shock, boundary 
on a leading edge.. |    layer interaction.. 

d)   Boundary  layer 
Flow past a cornen 

e) Base   flow. ! f) Separation over 
a  compression corner.. 

Fig.   1 - Navier-Stokes regions in large Reynolds number flows. 
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steady N.S. equations, because these fluctuations involve very small time 

and space scales. As is well known, one must consider the time-averaged 

(or ensemble-averaged) N.S. equations for the determination of the mean 

motion, complemented by additional relations or differential equations 

for the various correlation terms in order to close the system of the 

averaged equations. This set of additional equations, which constitutes 

a turbulence model, is necessarily largly empirical. Thus although the 

N.S. equations present the same importance for turbulent flows as for 

laminar flows for a correct description of flow phenomena in local 

zones, their practical interest is linked to the validity of the turbulence 

model which is used. The particular aspects of the numerical calculation 

of turbulent flows will not be considered in this paper. 

On the other hand, if the Reynolds number is low enough, as for 

example in flows about small obstacles or in the first phase of atmos- 

pheric reentry, then viscous effects are nowhere negligible and the entire 

flow field must be described by the N.S. equations. 

An intermediate situation is that of a flow in which it is possible 

to identify regions where dissipative effects are negligible, i.e. quasi- 

inviscid regions, but in which the other viscous regions cannot be des- 

cribed by the boundary-layer approximation, because they are very thick 

and they interact strongly with the inviscid flow regions. In that case 

the N.S. equations are needed only in these viscous regions, but the 

interaction with the inviscid flow should be properly taken into account 

in the numerical method. Such a situation, which occurs at moderate 

Reynolds number, is illustrated on figure 2 in the case of supersonic 

flows about a blunt body and about a slender body; the viscous regions 

are indicated by shaded areas. When the Reynolds number decreases 

the viscous regions extend until they occupy the entire flow field, 

merging with the bow shock wave. At still lower Reynolds numbers, 

the shock-thickness cannot be considered negligible on a macroscopic 

scale, and one reaches conditions which stand at the limit of validity 

of the N.S. equations. 

shock 

vC 

\£ 

outer boundary ABCD separates the N.S. region from the inviscid flow 

region (1) and from the boundary layer flow regions (2) and (3). The 

conditions to be applied on this outer boundary should express the 

matching between the solution of the N.S. equations in the N.S. region 

and the solutions of the approximate equations used in the adjacent 

regions. Of course the solutions in region (1), (2) and (3) depend on 

other boundary conditions to be imposed on the outer boundaries of 

these regions. In general the matching conditions on the boundary ABCD 

can be satisfied only through an iterative procedure. However, in some 

cases, the calculation of the solution in the N.S. region is uncoupled 

from the solutions in the external regions. This is the case in the two 

examples of figure 3 if the inviscid flow in region (1) is supersonic 

and is made of simple wave flows along A'BC (fig. 3 a) or along BC 

(fig. 3 b). 

incident 

a   Shock . boundary layer 
mferachon problem 

B (1) C 

•"*?}    N S region (3) 

kS  
axis of symmetry Q 

Fig 2 - Moderate Reynolds number flows. 

4. The computation domain 

Finite-difference methods operate over a finite number of calcu- 

lation points, so that the computation domain must always be a bounded 

domain. How to define this domain is the first question which arises in 

the setting-up of a numerical method, the second question being that 

of the conditions to be imposed on the boundaries. 

Part of the boundary is given by the physics of the problem 

(wall, axis of symmetry  ), but-excluding cavity type flows- it is 

always necessary to define an out er non physical boundary in a more 

or less arbitrary fashion. 

a) Consider first the case of a N.S. region imbedded in a large Reynolds 

number flow. By definition this region is bounded, and the only requi- 

rement is that it should extend over sufficient distances so as to overlap 

the adjacent inviscid flow region or boundary layer flow region, of course 

some preliminary knowledge of the problem to be solved is necessary 

in that case for the definition of the N.S. region. Figure 3 shows two 

examples of N.S. regions which might be used in a shock-boundary 

layer interaction (fig. 3 a) and in a base flow problem (fig. 3 b|. The 

b.  Base  flow  problem 

Fig. 3 - Computational domains for Navier-Stokes regions. 

Thus, in the shock-boundary layer problem (fig. 3 a) considered 

in [3) and (4), the flow quantities are held fixed along AB and BC : 

a boundary layer profile is given on AA" and uniform flows along A"S, 

SB  and  BC,    compatible with the incident given shock. Along DC. the 

flow quantities «re equated to the values computed at the next previous 

column of points; this is an approximate way of expressing the condition 

that the flow downstream of DC does not influence the flow in the N.S. 

region since the N.S. solution merges in an inviscid supersonic flow along 

D'C and in a boundary layer flow along DD'. 

For the base flow problem (fig. 3 b) computed in [5], the boundary 

conditions along ABCD are the following ones : a boundary layer profile 

is imposed on AB. an extrapolation of the flow quantities is used on 

DC, finally, the flow in (1) along BC is assumed to be inviscid and to 

be represented by a simple wave so that the flow quantities on BC are 

obtained by continuations along characteristic lines from points inside 

the N.S. region. 

b) Consider now the case when the entire flow field is computed by 

means of the N.S. equations and when steady uniform flow conditions 

are imposed at infinity. Different techniques can be used. First, it is 

possible to use a coordinate transformation which maps the entire phy- 

sical plane (assuming two-dimensional flow) into a finite domain in the 

transformed plane where the computation will be carried out. images 

of the points at infinity in the physical plane form a portion of the 

boundary (which can be called the outer boundary) of the computation 
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domain. An example of such a method is the classical conformal mapping 

of the exterior of a profile into the interior of a circle, the computation 

plane being the {   f   , 6    ) plane where  r ,    8   are polar coordinates 

in the plane of the circle (fig. 4). 

± 
Physical  plane 

r 
Plane of fhe circle 

TAr" 

T 

E_e 
2TT 

Computational pbne 

Fig. 4 - Conformal mapping of a profile into a circle. 

The image of infinity is the center of the circle, so that the outer 

boundary in the computational domain is the segment AB (   f - 0. 

0   4   $   <   *T    ); flow quantities are given on this outer boundary. 

Note that the first mesh between A* = 0 and   r = 4r corresponds to 

an infinite mesh in the physical plane; differencing accross this first 

mesh will not cause problems in general if the dependent variables are 

bounded at infinity. 

This method works as long as the flow quantities on the first 

line   r m Ar are close enough to the uniform flow conditions, so th8t 

it is not very much different from a second technique in which an outer 

boundary is chosen at a large but finite distance and the uniform flow 

conditions at infinity are imposed on this boundary. 

A third technique, illustrated on figure 5 (flow around a finite 

body delimited by two arcs of parabolas |6)). consists in choosing an 

outer boundary at a finite distance and in dividing this boundary into 

two parts*  : on the upstream part BAD (through which the fluid enters 

the domain of calculation) one imposes the uniform flow conditions at 

infinity, on the downstream part BCO (through which the fluid leaves 

the domain of calculation) condition of a more empirical nature are 

imposed, e.g. extrapolation. 

uniform extrapolation 

Fig 5 - Artificial limitation of the computational domain. 

The physical justification of this technique is that the downstream 

part of the boundary is too close to the body for the flow to reach 

again the same conditions as at upstream infinity, but far enough for 

its upstream influence to be small. 

A fourth technique is similar to the one discussed for the case 

of a finite N.S. region : the outer boundary is chosen at a finite but 

large enough distance so that the flow outside this boundary can be 

calculated by means of a small perturbation analysis; this outer solution 

depends on unknown constants (the first constants to appear in this 

analysis are related to aerodynamic force and moment) which must be 

determined by matching with the flow field calculated inside the boun- 

dary. This technique is the most rigourous from a mathematical point 

of view but, probably because of its complexity, it does not seem to 

have been used for the compressible N.S. equations. 

It was implicitly assumed in the preceding discussion that the 

flow perturbations were felt far away in all directions; this is not the 

case for a body in a supersonic flow, the flow field remaining unperturbed 

upstream of a bow shock wave. The computation domain can then be 

limited either by a boundary located at a short distance upstream of the 

bow shock or by the bow shock itself, depending on whether the shock 

is treated as a sharp but continuous transition zone (shock-capturing 

method) or as a true discontinuity (shock-fitting method). If the upstream 

boundary is taken upstream of the shock uniform flow conditions are 

used as boundary conditions. If the shock itself is used as upstream 

boundary, the determination of the shock position and of the flow 

quantities behind the shock require more elaborate methods. 

5. Finite-difference methods 

5.1. Generalities : various approaches 

Apart from a few integral methods [7], (8), all other methods 

used for solving the compressible N.S. equations are finite-difference 

methods. Some of them, for example [9] [10] [11], consider the steady 

two-dimensional equations associated with the vorticity stream function 

formulation. The discussion here will be limited to unsteady or • pseudo- 

unsteady     methods for the solution of the N.S. equations written in 

terms of the primary dependent variables as described in section 2. 

When the flow to be computed is unsteady, the numerical scheme 

must obviously be consistent with the exact unsteady equations, and it 

must be accurate enough in time as well as in space (second order in 

general). 

On the other hand, various approaches can be considered for the 

computation of steady flows : 

a) In the first approach the unsteady N.S. equations (2.20) are 

solved by a finite difference scheme consistent (with or without condi- 

tion) with these unsteady equations. The steady solution is obtained in 

the limit   t—»<*. The initial condition C8n be arbitrary. In the case 

when the initial condition is physically realistic and if the boundary 

conditions are treated in a consistent way with respect to the unsteady 

problem, the transient solution has a physical meaning and the physical 

interpretation of the problem may allow an easier control of the results 

during the transient stage. If the initial condition is physically unrealistic 

and/or the boundary conditions compatible with the steady problem 

only, the transient solution has no physical meaning. In this case the 

use of the unsteady equations appears as a device to build an iterative 

procedure for the solution of the steady equations : 

(5.1) 
OF 

<>V A    I   Jit   + ^'  / 

We must assum« that s straamiint cuts the boundary only m two point». 

dy       f?e   
l Ax     <>y 

and the time step   At  can be interpreted as a convergence parameter. 

b) If we do not require the transient solution to have a physical 

meaning, it is not necessary that the scheme used be consistent with 

the unsteady equations. The only requirement for the scheme is to 

give a steady solution when  /-»OB which must be an approximation to 

the solution of the steady equation (5.1), hence the scheme must become 

consistent with (5.1) when convergence is reached. This pseudo-unsteady 

approach was suggested by Crocco [12|. 

The eventual advantages to be looked for in constructing a non 

consistent scheme are : (it a stability criterion which allows a larger 

time step than with a consistent scheme, (ii) a faster convergence to 

the steady state. 

c) Going a step further in the pseudo-unsteady nature of the 

method we can try to obtain a faster convergence and/or a larger tim« 

step by modifying the unsteady equations themselves, i.e. by replacing 
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(5.2) 

the vector   W    by another vector   W* and by solving the pseudo- 

unsteady system : 

dt     ü"    öy " R,  l dx    dy J' 
For the solution of (5.2) it is possible to use again a non consis 

tent scheme. 

Such an approach was used in [6) for the computation of a flow 

field with a base flow region. With the exact W . i.e. W*(?,?*,?*.{£) 

the scheme used |see eq. (5.22)] leads to a stability criterion of the 

type :   At *  Re p Ax*.  In the base region, the density f  becomes 

very small; as a consequence the maximum allowable time step At is 

so small that the computation becomes impracticable. By simply choo- 

sing       y* a ( ?,U., v, Tj    the associated stability criterion is inde- 

pendent of   P     and the above difficulty is avoided. 

The determination of a non physical   H   in view of obtaining a 

fast convergence of the solution of (5.2) is much more difficult, and 

it has not yet been carried out except in special cases : for example, 

the idea was used in [13] for a one-dimensional incompressible boun- 

dary layer flow. 

In the next section, we present some representative finite diffe- 

rence schemes which have been effectively applied for computation of 

viscous compressible flows. Some of them are consistent with the un- 

steady equations, and others not. For simplicity, the schemes are pre- 

sented with model scalar equation : 

(5-9) 

(5.3) 

(5.4) 

(5.5) i 

_^L t  A.   f (*) =  € l± 
At AT    I Ar» dx' 

6 >0  . 
dt    '   dx 

The following notation is used : 

an 

;  X; B  i AX,  tu » n At, i and * are integers , Ax >0 , At >0 

(5.6) <r m 
At 
Ax 

£ AL 
L\X> 

5.2. Schemes consistent with the unsteady equations 

5.2.1. One-step explicit method (Victoria-Widhopf [14]) 

This is a leap-frog Du Fort Frankel scheme : 

(6.71     ««". U?.*(£,-£,), 

*»*[<,-«'*<*)*<*]• 
The principal part of the truncation error is <f 0"  (dJt/ffC / 

therefore the consistency is obtained if    <?0"**  ° (*/ 

when   At , AZ-^. 0 . At steady state the accuracy is    0(Axl). 

A linear stability analysis, assuming   A  -   d/'/du. = const., yields the 

Courant-Friedrichs-Lewy (CFL) condition : 

(5.8) /A/ <T*   t. 

The curve (1) of figure 6 shows the domain of stability in the 

plan«  (   lAl Ax/£   ,    I At IAX1 ). 

This scheme possesses the interesting property to have a stability 

criterion independent of the viscosity <f : however if   £ = 0, the resul- 

ting (leap-frog) scheme is nonlinearly unstable, as it is well known [15]. 

Note that the theoretical consistency of the scheme during the transient 

stage implies the use of a much smaller time step than the one allowed 

by (5.8). 

5.2.2. One-step implicit method (Briley-MacDonald [16]) 

This method is based on an implicit discretization of the equation 

(5.3) associated with a technique of linearization of the nonlinear term 

df/dx. The discretization in time is 

I dx h \ dx* a 

The term    (&f/**)** is expanded as : 

now 

A-(iL i*)   A. (A i ) 
* dx ( du   dt ''   dx K      dt / 

Finally, by bringing (5.11) and (5.10) into (5.9) and approximating 

the derivatives we get the scheme : 

,5,2, tf-*.f(C-C)* f[Cf<S- <,) - 

which is a linear finite difference equation of the general form : 

15.13, «.('<".   ?«#.   <"• 

This equation corresponds to a tridiagonal matrix which can be 

easily inverted by the technique of factorization (Gaussian elimination). 

The scheme (5.12) is first order accurate in time and second order 

in space (second order at steady state). For the calculation of unsteady 

flows the accuracy in time can be increased up to second order by 

using a Crank-Nicholson discretization in (5.9) : 

„•M    4«      .   r/ii »*♦' 

At 
(5.14) 

Because of its implicit character the scheme (5.12) is linearly 

stable without condition; however the application of the technique of 

factorization to the solution of (5.13) may impose some limitation on 

the coefficients of (5.13) (diagonally dominant matrix). 

In  [16]  the method  is  extended  to  multi-dimensional   N.S. 

equations by using an alternating direction implicit technique (Oouglas- 

Gunn [17]). For three-dimensional flows the problem reduces to the 

solution of a 3 X 3 block-tridiagonal system and of two simple tridia- 

gonal systems. The solution of these systems requires about one third 

to one half of the total computer time per time step, but the compu- 

tation can be done with a very large time step AC   (in some cases, up 

to 1250 times the At   given by the C.F.L. condition). 

Fig. 6 - Curves of stability. 
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5.2.3. Two-step explicit methods 

a) Brailovskaya [18). 

The two-step explicit scheme proposed by Brailovskaya is the 

following one : 

(5.15a, %«. Mf. r (fa .fa ), , (<t. ttt, «.,; 

,5,5b, <•'. 4-f.(fZ.fc')>* «, - W. *,)• 
The accuracy is        0 (At * Ax* ) during the transient 

state,       0 ( Az*)       in the steady state. The stability criterion given 

in (18] is : 

(5.16) At 4   thf J*L,JfLl 
I    fit       IAI J 

The study of the amplification factor for the scheme (5.15) with A = 

const, is very complicated, and it can only be shown that (5.16) is a 

sufficient condition. In fact, by doing a numerical study of the ampli- 

fication factor, we found (5.16) to be too restrictive : the curve (2) of 

fig. 6 shows the domain of stability obtained numerically. Note that 

At   *   Ax*     when    t * 1, so that the accuracy is of second order 

even during the transient state. 

b) Thommen [19] 

Some of the methods used for solving the equations of motion of 

viscous fluids are direct extensions of methods primarily devised for 

inviscid flows. So, the two-step Lax Wendroff-Richtmyer scheme [15] 

has been extended to the N.S. equations by Thommen [19] in the 

following manner : 

The accuracy is 0 (£&L * Ax*)        during the transient 

state.    0 (Ax.*)      at steady state and the exact linear stability crite- 

rion (curve (3) of fig. 6) is 

(518) A'fT** Zv> 4  1 ■ 

From (5.18) we deduce that the effective accuracy with respect 

to time,     0 (dAt)     . is higher than first order : if  £ * 1 then 

At *Ax* and if   £ < 1. then £ät< At 

c) MacCormack [20]. 

In one-dimension, there are two variants of MacCormack scheme : 

1) The forward-backward scheme 

I5.i».I  ««", K-<r(C-C)> '(*!«-*<» <.) 

2) The backward-forward scheme 

1520.,      *«'.  *t-r(fafa)* »(Mlf.lMf,  «CJ 

The truncation errors for the two variants are of same order 

0 (At   + Axx)   , but their expressions are different. In the inviscid 

case   ( £ - 0), with  / =  Ä 12, a study [21] of the truncation errors 

has shown why (5.19) can  give shock profiles without oscillation when 

the shock propagates toward the right ( X > 0) whereas (5.20) has 

the same property in the reverse case. 

An approximate stability condition has been given in [22] : 

f A*?'- h\>\z9 * 0     if      A%<rx.Z9t<0 

(5.21) 

yfV- *4*X*Z* 4 1     if     Atr*-3>>1>0 

It is not valid near     /?V- 3 )>*.  0 , i.e. near   \A\**-£ 

y/3. The curve 4 of fig. 6 shows the exact domain of stability deter- 

mined by a numerical study of the amplification factor. 

5.3. Schemes non consistent with the unsteady equations 

As already explained it may be interesting to consider schemes 

which are not consistent with the unsteady equations. In that case, the 

scheme must satisfy two conditions : (i) to give a solution which tends 

toward a steady state,   (ii) to be consistent, in the steady state, with 

the steady equations. Such a pseudo-unsteady approach can be inter- 

preted as a way to build an iterative procedure for solving the finite 

difference equations approximating the steady partial differential 

equations. 

5.3.1. One-step scheme (Peyret - Viviand [23]) 

The following scheme is suggested by the Gauss-Seidel technique : 

,5.22,   ^-W-f (C -/Z)*»«-'<*<?X 
It is clear that (5.22) is consistent with the steady equation 

associated with (5.3) if a steady state      f*>**'■ it* ) « obtained. 

In order to have informations about the existence of a steady solution, 

we shall consider (i) the stability of (5.22) and (ii) the partial differen- 

tial equation with which (5.22) is consistent. 

If   A - df i du = const., we obtain the stability condition : 

(5.23) _ ACT f )> 4 1 
2 

Taylor expansions in (5.22) show that the scheme (5.22) is con- 

sistent with the following equation of evolution : 

(5.24) 

with 

(5.25) 

df ifL , K ( £L-6 

Km 

d'jL     ) 

n*-J 

i-(».±<r) 
(where A may be a function of u). The equation (5.24) is parabolic 

in the direction  t > 0 if    K > 0. This is a necessary condition for 

the solution of (5.24) to tend toward a steady limit when   £-•«». The 

condition   K > 0, i.e. 4-<T + ^ < 1, and condition (5.23) give the 

necessary condition of convergence : 

(5.26) /Al v>   <  1 . 

The domain of convergence determined by (5.26) is limited by 

curve (5) on fig. 6. 

In the case A = const., the scheme (5.22) is nothing else than 

the application of the successive relaxation method to the solution of 

with       to m 2 £ At /Ax*      as the relaxation parameter : 

«•"_ u if", (i.u)til- 

By application of theorems on the convergence of this method [24] 

for the solution of (5.27) with Dinchlet boundary conditions, it is 

possible to show that condition (5.26) is sufficient to insure the con- 

vergence of the iterative procedure if A > 0; if A < 0, it can be shown 

that conditions (5.26) and  I'Al Ax < 2£ are sufficient for conver- 

gence. The connection between relaxation methods and equations of 

evolution has been discussed for instance in [45]. 
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Assuming (5.26) to be satisfied, we have the following results : 

(i)      if A > 0,   then K > 1 

(ii)     if A < 0 and i A I Az < 26  , then   K > 1 

(iii)    if A < 0 and IA I Az   > 2£  . then 1/2 < H < 1. 

If A < 0, it would be necessary to consider   u^,      instead of iLi.t 

at iteration    %t1       in order to have     K > 1 without other condition 

than (5.26). When   K > 1, the convergence toward the steady solution 

is faster than the convergence given by   a  consistent scheme (for the 

same At ). Finally, we note that the criterion (5.26) is less restrictive 

than the criterion of the fully explicit scheme (by a factor of 2 if 

A = 0). 

5.3.2. Two-step scheme (Allen-Cheng |5|) 

The method of Cheng-Allen is a modification of Brailovskaya 

scheme (5.15), based on a non-consistent discretization (with respect 

to time) of the dissipative term   Au/dx* already used by Crocco (12]. 

This two-step scheme is : 

(5.28b, «■•'. v.f re', fc), »(%;.f?*izi). 
The non-consistency of this approximation leads to a sufficient stability 

condition independent of the viscosity coefficient   £  (the C.F.L. condi 

tion) : 

(5.29) lAl<r   4    f. 

A numerical study of the amplification factor corresponding to (5.28) 

with   A   = const, shows that this condition is too restrictive. The curve 

limiting the domain of stability (curve (6) on fig. 6) is asymptotic to 

I AlAX l £ M 2 , and the scheme is linearly stable without 

limitation on At if   IAl Axlt < 2 . 

As for the previous non-consistent scheme (5.22), we consider 

the partial differential equation which is effectively discretized by (5.28); 

it is an equation of the form (5.24) with K given by : 

(5.30) KmJ_t±*. 

From (5.30) we deduce : 

(i) K > 0, so that the equation (5.24) is parabolic in the right 

direction t > 0, which is a necessary condition for convergence 

towards a steady limit when t •* °°. 

(ii) K < 1, hence the convergence is slower than the one given by 

a consistent scheme, but this relative slowness is balanced by the good 

stability property which allows large time steps. The rapidity of conver- 

gence of the iterative procedure corresponding to (5.28) can be charac- 

terized by the parameter K At which is inversely proportional to the 

number of time steps required to reach a given state. From (5.30), 

K At is an increasing function of At. so that it is advantageous to 

use values of Ji as large as possible (despite the fact that K decreases 

when At   increases). If   lAl Ax/£   < Z . there is no limitation 

on   At   from stability (of course At   must remain a small quantity 

for eq. (5,24) to be meaningful), and the larger   V    the faster the 

converqence is; for   V  )>   1, one gets      /Cv V4      and KAL^Ax'M: 

the rapidity of convergence is comparable to that given by an explicit 

consistent scheme for which    K = 1 and   At -v Axl/£ (because of the 

stability condition). If   lAlAx/£  »2, stability imposes )> <x 1, 

hence     K -» 1, and  At v ZU; again the rapidity of convergence is 

comparable to that of a consistent discretization with the C.F.L. con- 

dition. 

Numerical applications of the schemes (5.19), (5.22) and (5.28) 

for the linearized form of eq. (5.3), with    A = 1, 6 = 0,1 , have been 

presented in [39]. The results are in agreement with the previous dis- 

cussion of the convergence based on the equation (5.24) effectively 

discretized by the scheme. 

6. Boundary conditions at a wall 

The problem of the treatment of boundary conditions on an 

impermeable wall in viscous compressible flow reduces to that of the 

calculation of the pressure (or of the density). Indeed the velocity and 

the temperature at the wall are easily determined : in the continuum 

flow regime, the relative velocity is zero (eq. 2.15) and in general 

either the temperature or the heat flux are given (eq. 2.16); in the 

slip flow regime, the velocity and the temperature are related to their 

gradients (eq. 2.17); discretization of these boundary conditions allows 

the determination of velocity and temperature at the wall from the 

values of these quantities at neighbouring points. 

The wall pressure or density cannot be obtained from boundary 

conditions, and it must be deduced from the N.S. equations them- 

selves. Examination of the two-dimensional N.S. equations written in 

a coordinate system ( £  , J    ) such that   1} = 0 represents the wall, 

but else arbitrary, reveals that knowledge of the pressure at the wall 

is eventually required only in order to determine the value of the 

pressure gradient    ty/dp  in the momentum equations written on the 

line    T)x Al)   next to the wall (fig. 7), for instance : 

(6.1) 

Fig. 7 

In this case it is necessary to compute fa . Other possibilities 

are either to define    (Aft /dp )1 without using the value 1t0 , 

or to find a method which dees not necessitate the knowledge of the 

gradient   (^/^?/f    • We present now these different approaches, 

and, in order to simplify the presentation, we consider two-dimensional 

flow in cartesian coordinates ( Z , U   ) so that the wall is   V = 0. At 

the wall the velocity is zero :   M+ =   Vg   = 0. All the flow quantities 

are determined at same mesh points. 

a) A first technique consists in calculating the density at the 

wall   P     from the continuity equation ; 

(6.2) *t /- At dy    'r    7 

This technique is of delicate use and may lead to divergence of 

the results for   t -* «>. In particular, in the case of separated flows 

(see 15], (6], [25]). negative values of density may be obtained. However, 

a special discretization of (6.2) based on leap-frog scheme (5.7) has 

been used with good results for blunt body problems (steady [14] or 

unsteady [26]). This discretization is : 

(6.3) r-r-f i(fi'-(fi:j. 
The quantity  ((>& ^     (see fig. 8)  is determined by a second 

order extrapolation in space and time of the form : 

(6.4)      (e*f,«: *(?•)?- (e*);-1 - -(e*£'1 ■ 
This method amounts to use the following first order approximation 

for     (He*) /djf      in (6.2)  : 

J = 2 

j-1 

J — U     VMWMM///AWMtyWWMWWWM'l)   Y= 0 

y=2Ay 

y= Ay 

J=.1   ___[_   _^_ -y«-Ay 
Fig. 8 
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b) A completely different approach is to approximate (ty/ty)f 

with a formula which does not involve the pressure at the wall. For 

instance, noncentered difference formulae can be used; with first order 

accuracy : 

(6.6) fit]-* to-*; 
and with second order accuracy af.y 

(6.7) 
\ to h   Z Ay ' S**H- JA) 

A more involved variant makes use of the value of   [ty/d* )t 

which is obtained from the momentum equation at the wall   V ■ 0. 

More precisely, interpolation between the points   V = 0 and Uz 3Ay/Z 

gives the second order accurate formula : 

(6.8) (f,^(fbUfk-UfH^f 
where    (ty/fy)t    has to be calculated with second order accuracy 

from the transversal momentum equation at the wall 

(6.1 

The discretization of the right-hand side of (6.9) requires the use 

of noncentered differences in the y-direction but presents no difficulty. 

In a high Reynolds number boundary layer type flow, (djkldu )f 

will be very small, and could be considered as equal to zero. For this 

reason some authors have simply used   t,» jtf . 

[Note : in the general coordinate system ( | , » ) of fig. 7, ty/Jp 

and  ty/d$    will occur in both scalar momentum equations; the ex- 

pression of the gradient (     Op. jdn        )0  is then obtained from a 

combination of these two scalar equations). 

If the value of ft,   is wanted,  it can easily be deduced from 

(d]L joy )0    , for instance using : 

,6.10! h.j.Hfi.fi.läjfyl]. 

An analogous technique has been used in [27] in association 

with a two-step explicit method in which the predictor is computed 

at mid-points as in (5.17). 

c) When only the steady state solution is of interest, it is not 

necessary that boundary conditions be consistent with the unsteady 

problem. Moreover in the cartesian system of fig. 8 (or any orthogonal 

system associated to the body.    7      being projected along the coordi- 

nate lines), the value of   (dpfdu )1 occurs only in the trans- 

versal momentum equation at point 1 which determines the velocity 

component   Vj . These remarks explain a procedure [23] in which V** 

is calculated not from the corresponding momentum equation, but from 

the steady condition : 

(■%■).-» 

which is a consequence of the steady continuity equation written at 

point 0 (see eq. 6.2). A noncentered approximation of (6.11) yields : 

(6.11) 

(6.12) *r'-u*'r**r)~±'i i-"" \ 
When the steady state is reached a centered discretization of the 

transversal momentum equation at point 1 gives the value of fa  . 

d)  In references [5[. [28J, [29] the wall is not a mesh line but 

is located at mid-distance between two mesh lines (fig. 9). 

fig. 9 

vww/rwwwmw '  — 

y=3 Ay/2 

y= AY/2 
y=0 

The technique   successfully used in |5|. [28] for a wall at speci- 

fied temperature, consists in the determination of   P**f    by a linear 
o 

extrapolation : 

(6.13) P*"a ±e%t1. Le*t1 

However, which such a mesh, it is necessary to use appropriate 

differences when values at point 1 are computed. In the particular case 

of the base flow (fig. 3 b). it has been found |5] [28] very important 

to approximate the derivatives      (Of/to)^      where 

f ■   pir , pir1, pun,  p£o 

by second order accurate differences : 

A first order approximation such as 

gives an under-estimation of P   and (PO) which leads to the appea- 

rance of negative densities. 

7. The treatment of shocks and shock-layers 

The numerical treatment of shocks in viscous flows leads to dif- 

ferent problems depending on the importance of dissipative effects. 

In supersonic low Reynolds number flows, shock waves cannot 

exist as lines of discontinuities, but they appear as regions of strong 

compression which we call here shock-layers. The gradients of flow 

properties in such layers are high, but they 8re not of an order of 

magnitude greater than in the rest of the flow, so that their structure 

can be correctly represented over several mesh points without special 

mesh refinement. All the schemes presented in section 5 will be able 

to calculate the flow in shock-layers. 

At large Reynolds numbers, the thickness of a shock becomes 

quite small compared to the scale of flow gradients outside the shock, 

and it is no longer possible to consider a sufficiently refined mesh to 

describe the shock structure; but this is not necessary if the Reynolds 

number is large enough because the shock structure has no influence 

on the flow field, only the jumps of flow properties across the shock 

being of interest. In this case the flow is practically inviscid in the 

vicinity of the shock and the jump relations are the usual Rankine- 

Hugoniot relations. Of course the N.S. equations are then not really 

needed to calculate the shock, but in many cases it may be more con- 

venient to solve the N.S. equations in the whole flow field when the 

inviscid flow region is of small extent (e.g. in the cases of fig. 2). The 

treatment of shock waves in this case leads to the same problems as 

for strictly inviscid flows. 

The case of intermediate values of the Reynolds number (for 

instance in the blunt body problem) is more delicate because it is 

difficult to known whether or not the inner shock structure should be 

calculated as a part of the flow; furthermore the validity of the N.S. 

equations to describe the structure of thin strong shocks is in doubt. 

If the shock structure, as given by the N.S. equations, is calculated, 

the mesh must be very fine in the shock and this leads to computa- 

tional difficulties, if one considers the shock as a discontinuity, the 

question of the determination of correct jump conditions arises. A 

theory has been established [40] to take into account the dissipative 

effects in the jump relations; this theory is based on a small pertur- 

bation analysis valid for large Reynolds numbers, and it yields correc- 

tions to be brought to the Rankine-Hugoniot relations, however this 

analysis rests upon the use of the N.S. equations to describe the shock 

structure. In [112] the supersonic flow around a blunt body has been 

calculated using simplified N.S. equations associated with approximate 

viscous jump relations. 

To the best of our knowledge, the numerical solutions of the 

complete N.S. equations published at this time have involved only either 

low Reynolds number shock-layers spread over several mesh points, or 

quasi-inviscid shock waves treated by the methods used for inviscid 

flows and which we briefly review below. 
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Two types of methods can be considered for computation of 

shock waves in inviscid gas dynamics : the   shock-capturing    methods, 

and the  shock-fitting  methods. Each of them presents its own advantages 

and defects. 

The shock-capturing methods are based on an appropriate discreti- 

zation of the equations in divergence form [30], [31], and the shock 

points are computed as ordinary points. The major advantage is that 

no special treatment is required for the shock; on the other hand the 

shock is no longer a discontinuity but it has a fictitious structure spread 

over a few mesh points. Moreover, spurious oscillations often appear 

near the shock. 

Concerning the schemes described in section 5, it can be noted 

that the finite difference schemes (5.17) and (5.19) or (5.20) reduce, 

for c° = 0, to schemes very often used for computation of shock waves 

in inviscid flows by shock-capturing methods. The schemes (5.15) and 

(5.28) have been used for the computation (based on the N.S. equa- 

tions) of the shock wave in the hypersonic viscous flow over a flat 

plate respectively in [32] and [33]. At the limit    £ = 0. the scheme 

(5.7) reduces to the leap-frog scheme which is known to be unable 

to compute shock waves. The same negative conclusion applies to the 

inviscid limit of (5.22). Finally, we do not know at this time whether 

the implicit method (5.12) is able or not to compute shock waves, 

although it has been proved that some implicit schemes [34] permit 

such a calculation. 

Shock-fitting methods are based on a special treatment of the 

shock which preserves the discontinuous character of the flow. It is 

then necessary to introduce an additional dependent variable related 

to the shock position. The shock speed as well as the jumps of flow 

quantities are determined by means of the Rankine-Hugoniot conditions 

associated with an additional relation. This supplementary condition is 

deduced from the equations of motion : for instance, it is a compati- 

bility relation along a characteristic line [35], [36] or it is the value 

of the pressure behind the shock given directly by the finite difference 

scheme [37], 

Shock-fitting methods present the advantages that there is no 

smearing of the shock wave nor spurious oscillations in its neighbourhood. 

However, instabilities may appear in the shock front and convergence 

toward a stationary state may be difficult to obtain if the transient 

state if far from being realistic. 

In viscous flows, shock-fitting methods have been applied to the 

blunt body problem using, as in the inviscid case, a coordinate trans- 

formation such that the bow shock becomes a fixed boundary in the 

transformed computation plane. A more general approach, which is 

presently studied for inviscid flows [38], is a floating shock-fitting 

technique for imbedded shocks : the shock is not associated with a 

mesh line, but is left free to move through a fixed mesh. 

8. Problems relating to accuracy and computer time 

In this section we would like to discuss from a practical point of 

view some aspects of computational fluid mechanics, related to the pro- 

blems of accuracy and computer time. These problems are not specific 

to the numerical solution of the N.S. equations, but they do have an 

increased importance in this case because the N.S. equations are of 

interest in general for the calculation of flows with a complicated struc- 

ture, at least in the case of large Reynolds numbers. 

The computation of viscous compressible flows is expensive in 

terms of computer storage and computer time for several reasons : 

(i) the number and the algebraic complexity of the equations, (ii) the 

convergence toward a steady limit of the solution of the unsteady N.S. 

equations is the slower the larger the Reynolds number is, (iii) the 

complexity of the solution, especially for large Reynolds number flows. 

Thin boundary layer type regions require a very fine mesh for their 

correct description; the problem of constructing such a mesh is made 

much more difficult in the case of separated viscous layers since the 

location of these layers may not be known in advance, even approxi- 

mately. Similar difficulties arise in moderate Reynolds number flows 

with shock waves if one wants to take into account the structure of 

the shocks. 

To keep the computing time within reasonable bounds it is im- 

portant first to minimize the number of mesh points, and this usually 

requires that the mesh system be taken non uniform in the physical 

plane. This can be achieved by imposing a variable mesh spacing in a 

given coordinate system, or by means of a coordinate transformation, 

or by a combination of both techniques. The coordinate transformation 

is generally also chosen so as to make the boundaries of the compu- 

tation domain (in particular solid walls) coincide with lines of the mesh 

system, this considerably simplifies the treatment of boundary conditions. 

A coordinate system being chosen, and the mesh size being imposed 

by accuracy requirements, various techniques exist to reduce the com- 

puting time as much as possible for a given numerical scheme. With an 

explicit scheme subjected to a stability condition, the local maximum 

time step depends strongly on the local mesh size in the physical space; 

if the physical mesh varies in an important way throughout the com 

putational domain, the time step will be determined by the smallest 

mesh and will be very small. It is then practically indispensable to 

divide the domain in several regions in each of which a different time 

step is used so as to reduce the total number of operations necessary 

to advance the solution in time in the entire field. This technique 

necessitates a matching of the solutions at the interface of two regions 

with different time steps; for the transient solution to have a physical 

meaning, the matching must be made with values obtained at the same 

time in the two regions; if no interest is attached to the transient stage, 

the matching can be made with values obtained at different times, 

but it is difficult to take advantage of this freedom to determine what 

would be the optimum procedure. Going further in this direction, the 

local value of the time step can be used at each mesh point [41]. this 

very simple device eliminates the matching, but one cannot be sure that 

it will not make the calculation diverge. 

Another procedure which is often used to reduce the computing 

time consists in carrying out successive calculations with mesh refine- 

ment (local or general) from one calculation to the next one. thus the 

calculation with the finest mesh, which is the most time consuming, 

starts with initial values which are already a good approximation to the 

exact solution. 

Still considering the case of explicit schemes, it can be advantageous 

to use a splitting method [42] when the mesh spacing in the physical 

space is much smaller in one direction than in the other direction (as 

is the case for a thin viscous layer); in such a method, based on the 

discretization of multi-dimensional equations by means of a series of 

one-dimensional finite difference operators, the very small time step 

associated with the smaller mesh dimension has to be used only for the 

corresponding one-dimensional operators, whereas a much larger time 

step can be used for the one-dimensional operators in the other direction. 

Time-step limitation is the main drawback of explicit methods; 

nevertheless these methods have been much used because of their sim- 

plicity and of the fact that the number of numerical operations at each 

step is kept to a minimum. Another approach which is attracting more 

attention now is the use of implicit schemes which lead to less severe 

stability conditions or which are unconditionally stable; of course this 

advantage is counterbalanced by the fact that at each step one must solve 

large algebraic systems; this numerical task can be much reduced by 

using fractional step methods ; splitting methods |81], or alternating 

directions methods [16], [66], [67]. 

No clear-cut conclusion can be drawn at this time regarding the 

best type of methods (implicit or explicit). The answer might be found 

in the use of different schemes in different regions of the flow field : 

for instance an implicit one-step method in a strongly viscous flow 

region with a very fine mesh, and an explicit two-step method in a 

region with small viscous effects (eventually with shock waves) where 

a  coarse mesh is sufficient. 

9. Bibliography 

To conclude this lecture, we give a list of references relating to 
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numerical calculations of viscous compressible flows based on the Navier- 

Stokes equations, and grouped according to the type of problem treated. 

A. General studies 

[29]. [39]. [461 to [52], |113]. 

B. One-dimensional flows 

[12], [19], [49L [51L [53] to [66]. 

C. Two-dimensional flows 

a. Internal flows 

laminar : [ 111. [181. [67] to [75[. 

turbulent : |9|. [101. I?6]. 

b. Flat plate 

[191. [22], [321, [33[. [42], [60]. [611, [751, [77] to [81]. 

c. Shock • boundary layer interaction 

laminar : |42|. [60] to [62], [111]. 

turbulent : [31. [4], [44|. 

d. Expansion and compression corners 

(82). 1321. [44], 1801. 

e. Blunt body problems 

Shock layer flows or shock-capturing methods ! [7], [8|. [14], 

[19]. [23], [261. (411. [83] to [891- 

Shock-fitting methods . |37], [90] to [93]. 

f. Base flows and steps 

[5]. [28]. [29]. [79H941 to [101]. 

g. Complete flows around finite bodies 

laminar : [6], 127], [57], [79], [84], [85]. [102] to [107]. 

turbulent : [43]. 

D. Three-dimensional flows 

duct flow : [161. [108]. 

blunt body (shock-fitting) : [109]. 

E. Various problems 

[20]. [66], [72] to [751, I HO]. 
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APPLICATIONS OF FINITE ELEMENT METHODS 
IN FLUID DYNAMICS 

b> 

C.Bellevaux 
L1MSI (CNRS) and ENSTA, Paris 

and 

M.Mailh* 
University Pierre et Marie Curie and ENSTA, Paris 

INTRODUCTION 

This paper is divided into two parts, the first devoted to a general presentation of the finite element method, 
and the second to some applications in fluid dynamics. 

In the first part, we consider a simple example, the resolution of which will allow us to show the successive 
steps common to all finite element methods and thus demonstrate the problems of functional analysis and the 
numerical techniques to be used.   We then generalize this example using elements of functional analysis necessary 
for a rigorous formulation. 

In the second part we outline briefly the well-known method of singularities, because of its application to 
potential flows.   We then treat separately the linear and non-linear case of Navier-Stokes equations for viscous flows. 

1.     THE FINITE ELEMENT METHOD 

1.1    Example 

/. / / Strong For/?! 

The formulation of physical problems leads in most cases to a system of the type: 

du 
— + Au   =   f    in    Q x I0,T] 
ot 

Bu   =   0    on    dil ;       u   =   u0    for    t   =   0 . 
(1) 

Where   Q   is a bounded domain of   Rn   and   3£2   its boundary.   In general   u   is a vector-valued function 
and for problems in fluid dynamics   A  is a non-linear operator with partial derivatives up to the second order and 
B  is an operator of the first order which does not "cover"  A .   This system with appropriate regularity conditions 
is called the strong form of the problem and its solution is said to be strong.   Numerical methods using Equations i I > 
directly can be built up with finite differences.   We shall leave aside these techniques and introduce other methods 
based on finite elements which require other formulations (weak or variational).  We introduce this using as an 
example the classical Neumann problem. 

Neumann problem: strong form 

I e1   u(x,y)   with continuous derivatives up to the second order verify: 

d2u     d2u 
7T+ =-r  =  -f(x,y)     in    fl 
dx2      by2 

(2) 
du 
—  =  -g(x,y)    on    3ß . 
9n 

Where   n   is the unit normal vector oriented outward on   d£2 . 
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For the existence and uniqueness of the solution of problem (2) it is necessary to add a following condition on 
the data   f  and  g : 

ff   fdxdy +  f     gds  =   0 . (3) 

By means of an additional regularity hypothesis on   ÖJ2, f,g, which we do not discuss, we can demonstrate 
the existence of a solution and its uniqueness provided that we identify any two solutions differing only by a 
constant.   To obtain a unique solution we add the supplementary condition on   u 

JJ   u(x,y)dxdy   =   0. (4) 

The equation and boundary condition (2) define the strong form of the Neumann problem.   Equality (3) is a 
condition of compatibility and (4) is a condition of uniqueness. 

/ / 2 Weak Form 

For a steady problem the Equation (1) becomes: 

Au   =   f 

and is replaced by the formal identity: 

<Au,v>   =   <f,v>    for any    v (5) 

where 

<w,v>  =    ff   wvdxdy 

is the scalar product in   L2(J2)*.   To obtain a weak solution   u   it is necessary to determine the functional space   U 
to which solution   u   belongs and the functional space   V   to which the test function   v   belongs (note that the 
spaces U and V are not necessarily identical). 

The boundary condition   Bu = 0  on   bSl  can either be included in the definition of  U  or in the equality (5). 

In the first case the solution   u   belongs to a space   U  of functions   w   verifying   Bw = 0 . 

In the second case equation (5) is modified to obtain a new equality: 

a(u,v)  =   <f,v> . 

For homogenous elliptic problems we can prove the existence and uniqueness of the weak solution   u   (the 
Lax-Milgram Theorem). 

The question of whether the weak and strong forms are equivalent is exceedingly complex, and we shall not 
discuss it further. 

Neumann problem: weak form 

Let   v(x,y)  be defined in   £2   with sufficient smoothness.   Multiplying (1) by   v   and integrating on (12) gives: 

Jl(ö+i?)vdxdy = -fl,*"**- 
Using Green's formula and taking into consideration the boundary condition   du/dn = —g  we obtain: 

Pf   /du dv      du dv\ rr P 
(r-^- + rr)dxdy   =   JJ    fvdxdy + J     gvds. (6) JJn \dx dx      dy dy/ JJfi Jdft 

Neumann problem: functional eonsiderations 

If   u   is a strong solution of the Neumann problem one can prove that equation (6) is verified.   Conversely with 
additional regularity conditions on the solution   u   we can proceed backwards and thus prove the equivalence. 

L2(£2)  is the space of square summable functions on   ft . 
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If v   is a real-valued function on   fl   let us define the space   H,(n)   by 

H,(ft)   =     v/v,^, ^eL2(ft) ,     ff   vdxdy   =   0 . (7) 
dx    by J*ft 

We shall say that   u   is a weak solution of the Neumann problem if  u G H,(£2)  and if the following equality 
is true for any  v € H,(ft): 

a(u,v)   =   (t.vi 

where 
rr /au dv   du 3v\ j 8(U'T)- \\S*-^*-y*)äxiy (8) 

it.v)   -    ff   fvdxdy +  f    gvds . (9) 

Existence and uniqueness of the weak solution 

With the compatibility condition previously stated we can prove the existence and uniqueness of u   but this 
demonstration is too technical for this paper. 

1.13 Varia tio rial Form 

When the functional spaces   U  and   V  are identical the equality of the weak form:  a(u,v) = (f,v)   for any 
v E U  is sometimes equivalent to the minimization of a functional   L(u) .   This is called a variational form of the 
differential problem and can be stated as follows: 

Find   uGU  so that   L(u)  is minimized. 

Case of positive definite bilinear forms 

In tin- 

a(v,v) > 0    if    v * 0 . (10) 

We can choose 

L(v)   =   a(v — u, v — u) — a(u,u) . (11) 

From equation (10) we can say that   L(v)   is minimized if  a(v — u, v — u) = 0 .   In other words if v = u . 

L(v)   seems to depend of the unknown solution   u   but in fact 

L(v)  =   a(v,v) - 2a(u,v) 

is the sann L(v)   =   a(v,v) - 2(f,v) . 

Variational form of the Neumann problem 

In this case   a(u,v)   defined in (8) verifies (10). 

So we can state: UV)  "   If, (GO' +(32)dXdy-2 J/nfvdxdy-2 J^gvds. 

1.1.4 Approximated Solution by Finite Elements 

Introduction 

The purpose of the finite elements method is to provide an approximated solution of a differential problem 
starting from its variational form. 

A formulation by finite elements requires three stages: 

(i)  representation of the domain   Q, : 

(ii)  choice of the functional space   U^   approximating   U  and in which the approximated solution   uh   is to 
belong; 

(iii)  minimization of   L  (or of a functional L^ approximating L) on the space   U^ . 
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The choice of a finite dimensional space for   U^   leads to a finite system of equations. 

In the linear case the solution of this system can be made either by classical techniques of elimination or 
iteration, or by approximate methods of elimination which take into consideration the structure of the matrix. 

Representation of the domain 

The boundary   d£2   of the region   H   is approximated by a polygonal line   d£2h . 

In most cases we subdivide into triangles the region   fih   bounded by   dtl^ . 

Let   S   be the set of vertices of the triangles  T; .   The elements belonging to   S  are indexed by two systems 
of numbering: 

(a) A global system where the vertices are indexed from 1 to ns (number of vertices in S); 

(b) A local system of two indexes (ij) where the vertices are indexed in connexion with the triangle which 
they belong. 

The index  j   varies here from 1 to 3 and the index   i   from 1 to n,  (number of triangles). 

The matrix of permutation   R  allowing the mapping of the global system into the local one is called the 
matrix of reduction. 

This matrix   R  is rectangular with  3nt   rows and  n8 columns. 

Let   sGS.   This vertex has an index   k   in the global system, and indexes  i J   in the local system.   If  f  is 
a function defined on   S  its value is noted either by   (^   or by   fj ;   and to change from one notation to the other, 
we me the relation: 

tfy) = R(fk) (12) 

As an example, let the domain   D^   be formed by the two triangles 1 and 2.   In the global system the number- 
ing of the vertices goes from 1 to 4 and in the local system we have (Fig. 1): 

(1,1),(1,2),(1,3),(2,1),(2,2),(2,3) 

4   (2,3)   (1,3) 

(IJ) 

2   (1,2)   (2,1) 

Figure 1 

To change from the global system to the local system we use the equality: 

f.,! 
f|.l 

Choice of the space   Uj, 

The functions  f  will be obtained by local interpolation from a set of discrete values   f^   or  fj;   given on   S 

1   o   o   o" v 
0    10    0 u 
0    0    0    1 fa 
0    10    0 u 
0    0    10 
0    0    0    1 

f(x,y)  =   £ N^x.y.fi,,^,^). (13) 
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Notice that   f  is defined separately on each triangle   Tj . 

Tin. choice of the functions  Nj   is conditioned by the problem to be solved, and by the desired accuracy. 

For second order problems to be solved with poor accuracy we can choose functions   Nj   of the following type: 

Nj(x,ytfu.f|,,f,s)  =   0    if   (x,y) £ T, 

Ni(x,y,th,fi2,fi3)  =   £ NjjCx.y)^    if   (x,y) e Tj . (14) 

The functions   Nj,   arc linear: 

Njj(x.y)  =  ay + byx + c^y . 

The coefficients  a^ , bjj , c,j   are chosen in order that   NJJ   equal 1 at the vertex   Sjj   and equal 0 at the other 
two vertices of the triangle   Tj . 

We now introduce barycentric coordinates. 

If the cartesian coordinates of  M   are   x,y, and if the cartesian coordinates of the vertex  s^   are   Xjj,yjj 
then the barycentric coordinates  X, . X2, X3   of  M   are determined by the following system of linear equations. 

I Xi 1 2X12 3*13     —     X 

Mil   + X2Vi2   + X3Vi3    =    y 

x,     + x2     + x3      =1 

If  M   is the vertex   Sjj   then   Xj = 1   and   Xk = 0 (k#j) .   Hence we can write: 

(15) 

or 

Nij   - 

where 0,1,k) is a permutation of (1,2,3). 

X xh xik 
> Vii yik 
1 1 l 

x«j 
xi. xik 

>»i 
1 

Vii 
1 

Vik 
l 

For the Neumann problem previously stated the space   U^   is the discrete subspace defined by the uniqueness 

condition:      JJ   u^dxdy = 0 . 

Discrete variational formulation 

We know that the weak solution   u   minimizes the functional: 

We use the Ritz method to approximate   u   in   Uj, .  Then the discrete problem is: 

Find   Ufo G Uh minimizing the functional 

—- JLKS' *©"- dxdy - 2 J       gvhds. 

L  is often called an energy. 

The forms of the discrete and continuous problems are the same and thus we have good reason to think that 
Ufo   will be a good approximation to   u   provided that the space   Uj,   is close enough to the space   U . 
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Let: 

Uh(x>y)  "   S NjCx.y.Uj^Uj^Uij) . (16) 

The functions  Nj   are given by the relations (14); the quantities  UJ;   represent the   ns   values of the function 
u   at the vertices of the triangle in the local system of numbering.   In this way we can define the function   u^   on   Sl^. 

The interpolation functions   Nj vanish on the outside of triangle   Tj   and their first derivatives are well defined 
functions but are discontinuous at the boundary of triangle   Tj .   Then we can obtain the value of the total energy 
Lh(uh)   by summing up the energy in each triangle: 

Lh(uh)   =   £ Lj(uh) • 
i=i 

Where: 

—-iL|<a,*er—* dxdy — 2 J       gNjds . Janh 

(17) 

(18) 

If   Lh(uh)   is minimum we have: 

—Ü   =   0        1  < k < n, . 
duk 

31* 
duk 

=   Rl jdLj 
dUjj 

And: 

Where   Rl   is the transpose of the reduction matrix defined by (12). 

From the relations (12) we obtain the following expression for  Lj(Uh) : 

(19) 

LiK)   - 
Tj (t, 5" UikJ+(t ? *)'"2 £NikUikf )dxdy"2 L 4NikUik8ds 

Then: 

Bun 
ÜT, 

/v dN* ™n + dN* d3i\u - N r dxdy-2 J      Njjgds. 

This relation can be written: 

3L 3 

5Z = JEW*"* k=i 

Where: 

„  IT   /dNik dNjj      dNik dNjA 

ftj   -   2 JJ_Nyfdxdy + 2 J      gNijds. 
Tj ÖS2h 

Or in matrix notation: 
dLj 

3uii 
=   A{uik}-{ftj> (20) 

Where   A  is a   3nt x 3nt   matrix. 

Using the above Equation (20), Equation (19) can be written: 

RtAR{uj} - R'tfjj}   =   0. 

So we obtain a linear system of order   ns . 

(21) 
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1.2   General Presentation of the Finite Element Method 

We now describe the finite element method applied to differential problems.   Assuming that the continuous 
problem to be solved is in its variational form: 

Find   u  so that L(u)  =   Min Liv) 
vG V 

where   L   is a quadratic functional containing derivatives of orders up to   m , 

V   is a functional space on (12), 

iil) is a bounded domain of  Rn . 

In all cases we have as before the same three stages (see 1.1): 

(i) Choice of  fl^   and of the finite elements; 

(ii)  Choice of the discrete space   U^ ; 

(iii)  Assemblage and solution of the equations obtained. 

/. 2 / Choice of the Discrete Space   Uh 

The fundamental idea of the finite element method for solving functional equations is to use piecewise polynomial 
approximations of the unknown functions   u^   so as to obtain a finite system of equations. 

Thus, the first step consists in the "choice of the pieces".   If the functions are defined on a domain   £2  we 
subdivide it into subregions named finite elements o\' simple shapes and possibly of various sizes. 

The second step is to choose in every element  fij   the finite set of parameters  q^ (j = l,nj)  which describe the 
function, and the shape functions   Njj   associated with these parameters: 

"h|n, = £ QijNjj. 

In most cases the parameters  qy   defining the interpolate   Uh   are associated with nodal values of the function 
ii|,   on points   Zj   located inside   £2j   or on its boundary: 

Qij   =   Dj(uh(zj)) 

where   D;   is a derivative operator, 

Zj G £2j a node. 

Note that it is possible to luve multiple nodes where, for example.   /;   = z;    but   D:, =£ D;   . 

The third step of the definition of the interpolate is to relate values of the parameters of adjacent elements so 
as to ensure continuity of the function   u^   and moreover of its derivatives of order up to   m   (conforming elements). 
The simplest way is to take as parameters some values of the function or its derivatives on the boundary of the element. 
In this way some local values are shared by several elements so that we must distinguish between the local set of 
parameters defining  ujjl^j   and the global set of parameters defining   Uj,   on   £2 .   We describe later (1.2.5) some 
classical ty|X's ol elements and the associated interpolation procedures. 

Thus we have defined a discrete space   U^ . 

1.2.2 Assemblage 

After having defined the finite elements we must establish the equations.   We proceed element by element in an 
arbitrary (but convenient) order to compute the energy   L^v^) .   Note that it is possible to compute this functional 
element by element if the elements are conforming, i.e.. If the derivatives of order (m — 1) are continuous on the 
inter-elements boundaries 

In the local system of coordinates with local parameters the quadratic part of the energy   Lj   of the element   i 
can be defined by a symetric matrix   kj   often called the stiffness matrix, so that if we denote by  qj   the parai 
vector  qj = (qy) j = 1 \\x 

l^   =   qfkjqj + ... . 

In other words, we have a quadratic functional of the local variables  q^ . 
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In the same way we can compute the linear part of the functional   Lj 

-2(f,v)  =  -2ffa . 

Before computing the total energy   L^   we note that to obtain the final system of equations we have only to 
compute the coefficients of a global matrix   K.  To obtain   K  we must change the local names of the parameters 
into global ones and to transform the formula which gives the local energy in the local system of coordinates into a 
formula using the global one.  We explain this with notations in matrix format. 

Let  Q  be the array of global parameters.   For each element we can define a rectangular incidence matrix   Pj 
so that: 

Qj   =   PjQ. 

Then  q4   is the subarray of Q  related to element  i.  We can define the transformation matrices  rt   and   Rj 
so that: 

qi   =   qcfj   =   rjPjQ  =   RjQ . 

In   Rj   we take into account the two different systems of coordinates.  Then we need only add local energies 
in a proper way to obtain the global energy and the global matrix   K : 

L = ZILi = EqfMi -2Efo 

or L  =  SKQ'RfkiRjQ-lftRiQ). 

The matrix   K = XRjkjRj   is called the global stiffness matrix, and the vector   F! = XI fjRi   the generalized 
i i 

force.   We obtain the quadratic functional: 

UQ)  =   QlKQ - 2FlQ . 

Obviously the minimum  Q  of this functional is the solution of the linear system: 

KQ  =   F. 

1.2.3 Finite Elements and Galerkine Method 

Up to now we have used the Ritz method to solve variational problems.   However many problems cannot be 
formulated in a variational way but only in a weak way. 

Let the continuous problem   P  be: 

(P) 

Find  u E U  so that 

a(u,v)  =   (f,v)    for any    v € V 

where   U  and   V  are functional spaces, 

a(u,v)  a bilinear form bounded on   U x V , 

(f,v)   a linear form on   V . 

Let   Ufo C U  and   Vh C V   be two discrete spaces of the same dimension   N(h)  where  h   is a positive 
parameter representing the accuracy of the discretization.   When  h -» 0  then   N(h) ■* » .   In the Galerkine method 
we solve the sequence of discrete problems  P^ : 

(Ph) 
Find   Ufo G U^   so that 

ah(uh'vh)   "   <f'vh)    for any    vh e vh 

where   Ufo   and   V^   are the vector spaces formed by linear combinations of the   N(h)   basis functions 
(*i,j= 1, .., N(h)), (*j, i = 1,.., N(h)). 

N(h) N(h) 
If  uh =  XZ   Uj^i   is the discrete solution we must have for all  v^ =  ^   vj^i   the equality: 

i=i j=i 

SujVjahO^p  = Svj(f,^) 
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which leads to the following linear system of order  N(h) : 

N(h) 
£   11^(0,,^)   =   (f,*j). 

Generally we choose   ty, = Vh .   However the so-called collocation method (t//j = 6Zj) has the advantage of simplifying 
the calculation of the coefficients  a(0j,i//;) , but requires smoother functions   I/>J . 

We now study the case where the spaces   Uj,   and   Vh   are defined by using finite elements. 

We could of course associate to each nodal value   k  a global basic function  0j<   the restriction of which to each 
element   ej   is the local basic function   N^   corresponding to this nodal value.   This brings us back to the previous 
formulation, but it is no longer a matter of finite elements. 

To avoid this we proceed as follows, operating element by element as before.   Let   aj   be the restriction on the 
element  ej   of the bilinear functional  a, let  qikk=l,..,ni   be the associated nodal values and let   Njk   be the 
associated basic functions. 

On   Cj   we cannot write that: 

2E qikQi>hi(^ik^ij) - s:q!j(f^ij> 
K.J     1 J 

for any   qjj, j = 1 , ...nj   since this equality is verified only for the basic global functions. 

Therefore on each element  e4   and for each test function  0jj   we introduce the correcting terms  4>jj   so that 
the following equalities are verified: 

2G qikaw<*ik.*Ij) + *ij   ■  Oij> • 

The auxiliary unknowns   *«   will be eliminated immediately (though they have a physical interpretation that 
we explain later).   These auxiliary unknowns  *jj   and the nodal values  (Qj, i = 1,.. N(h)) are determinated by the 
equalities: 

N(h) 
£   Qmah(*m.*n>   =   <f'*n> 

m = i 

for  n = 1 N(h).   As before we obtain this system by summing the equations corresponding to the same global 
node, without taking into consideration the auxiliary unknowns. So we write that the sum of the associated auxiliary 
unknowns is zero. It is clear that in this way we obtain the same equations as in the Ritz method where we minimize 
the functional: 

a(u.v) - 2(f,u)   =   L(u) . 

Interpretation of the auxiliary unknowns 

The following physical interpretation of the auxiliary unknowns as surface forces can be explained more easily 
on the continuous problem 

Find   u G U   such that 

a(u.v)   =   (f,v)    for any    v G V . 

Let fi'Cfi. 

Note that  a'(u,v)  and   (f,v)'   are the restrictions to  £2'   of the previous  a  and   (f,v).  Generally the following 
equality is not true: 

a'(u,v)  =   (f,v)'    for any    v G V 

this is because of the influence of the elements in   £2 — £2'   on the element  £2' . 

So we state: 

a'(u.v)      (t.v)'   =   ((*,v)) 

where (clwii is an unknown linear form on V.   Note that if the supp* (v) C S2' or if the supp (v) C 12 — £2' 

* Supp(v) = {x|xen,v(x)*0}. 
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then ((*,v)) = 0 .   Hence ((♦,?)) is a surface integral on   dft' .   This integral takes into account all the influence 
of  n - Ü'  on the element   £1' .   This is a mathematical explanation for the surface forces which apply when we 
cut up a part of a body mentally. 

Analytically the auxiliary unknowns are the Lagrange multipliers which are necessary to minimize   L(v)  on all 
the elements, because they take into account the constraints of equality of the nodal values shared by several elements. 

Example:  Let  a(u,v)   be (see 1.1): 

2L* ln dXj dXj 

2 

a(u,v)   =     > — —- dx 

i=i 

(f,v) = r fvdx. 

Using Green's formula we obtain. 

a'(u,v) - (f,v)'   = r^-vds   =   ((<i>,v)) 

where   ds  is the surface element on   dH' . 

In this case   <t>   is the normal derivative of  u   on   d£l' .   If  u   is a potential, then   du/dn   is called the normal 
strain. 

/.2.4 Simultaneous Assembly and Elimination 

In some problems where there are many unknowns and thus it is difficult to write explicitly the matrix   K . 
In fact the size of the matrix   K  can often exceed the core memory of the computer.   In this case we can use the 
so called frontal method. 

We start from the reciprocal of the incidence matrix   R   which gives the relation: 

set of global unknowns -* set of local unknowns . 

As before we proceed element by element.   If we make a suitable choice in the numbering of global unknowns, it 
is possible to carry out elimination of a row as soon as every element associated with this row has been accounted 
for.   In other words the global unknown associated with this row is written in terms of the other unknowns.   This 
is stored and we can then eliminate the corresponding row and column of  K .  We pursue such a procedure until 
total elimination. 

Note that in all cases we first eliminate the unknowns corresponding to internal nodes, which are related only 
to nodes of the same element (static condensation).   In this respect the frontal method is just a generalization of 
the static condensation. 

1.2.5 Usual Finite Elements 

Many finite elements have been studied.   The finite element method has given a new impulse to the old 
mathematical theory of multivariate interpolation.   We first study the one-dimensional case, which will outline 
the problem but is of no practical interest.   However, with regular meshes in multi-dimensional space we can deduce 
by tensor product some useful formulae. 

One-dimensional elements:  in this case we have only one shape for the element.   Every element can be mapped 
by translation and scaling on [0,1 ].   If the polynomial to be found is of degree   k   it is necessary to have (k 4- 1) 
nodal values.   In this way we preserve all polynomials of degree   k .   When we choose the nodal values and the nodes 
we must put sufficient nodal values in 0 and 1 to ensure continuity of the derivatives and to reduce the dimension 
of  Vh .  We show below some elements corresponding to   k = 1 , 2, 3 .   As usual we denote by  Cp   the class of 
real valued functions with continuous derivatives of order up to   p . 

k = I.   The nodes are 0 and 1 and the nodal values are the two values  u0  and   u,   of the function   u   at 
these nodes-   After assemblage the function   u^   obtained is of class  C° .  The shape functions  Nj   aa» 

N,(x)  =   1-x    (node 0)        N2(x)  =   x  (node 1). 

k = 2 .  We add one node at the center of the elements. 



c
 :3AEq 3M 

X   a|8uBuj aifi uo   ' 0 = n 
A
!P  *

ei
U 

os
 pa}B|odjajui aq oj uoijaunj panjBA JojaaA B aq  (A'n) = f\   jaj ioej ii| 

sjuiBjjsuoa asodiui oj uiopaajj jo saaj^ap ÄJBjuauiajddns asaqj asn UBO ouo J3A3A\OH    aajqj A"q patidijiniu si 
suA\ou)jun jo jaqiunu aqj puB snonuijuoa JD8UO| OU SI paujBjqo uojjaunj aqx    sagpa aqj jo sjuiodpjtu aqj sapou SB 

ajjcj oj si (aiuiapme A*|ajnd s; jsajajm asoqM) uoijnjos jaqjouy     0J  SSBJD jo uoijaunj B uiBjqo 3AA    (£fr6I JUBjnoj 
33U|s) sjuauiajs ajiuy 3qj jo 3SB3 UMOU>J jssq sqj si s?qj 3|3UBUJ sqj jo ssnjjjSA sqj JB sapou qjiy\\     / = y 

-s(BiutouX|od uoi)B|odi3)ui aqi jo   >j   aaj3ap aqi A"q sjuaiusjs SJIUIJ sqj AjissEp OM aiojaq sy   :s9i8uvjj± 

•sajäuniaaj puB S3|8UBUJ 9JB ssdBqs pjjuauiBpunj OMi sqj   ;SJU9U19J9 iDuoisuBiuip-OMX 

sjusiusp [BDidAj auios pus uoijBjodJsjui SJUUJSH )0 suoipunj aisBfl    Z'^.d 

n-e   «ve   "ze     ne     "e 

(3 wnaj aas)   (',n anjBA |Bpou aqi JOJ) Z\(\ _ x) 

(«n anjBA iBpou aqi JOJ) (X£ _ e)cx 

(°(n anfBA (Bpou sqj JOJ) C(| _ x)x 

(On anjBA jBpou aqj JOJ) (l + x~),( i _ x) 

(x)
c
N 

(*)
C
N 

(x)
!
N 

:ajB   ?N  suojjaunj adBqs aq^    uojjBiodJajui ajiuusH panea-os aqj si siqj,   ■ , j  SSBJO jo si psuiBjqo 
n   uoijaunj aqj J3AOSJOV\    mopaaij jo saajdap jaMaj aABq aM puB sjuaiuap OMJ \q pajBqs si anjBA 

jBpou qaBa snuj,   ■ ^n   puB   n  sanjBA |Epou OMJ aqj apou qaBa oj 3AIS jnq | puB Q sapou A|uo daa>j (n) 

pasn uiopjas poqjstu B  :apou jBUjajui ajoui auo ppB (1) 

:SXBM juajajjip OMJ UI paaaojd UBa SM.   ' £ = y 

l\-L 



7-12 

where: 
Nj(x.y)   =   1 - 2Xj      (X,,X2,X3  are as usual barycentric coordinates in T) . 

so 
N     m      y2x3 - x2y3 + xy3 - yx3 + yx2 - xy2  = P(x,y) 

1  '       y2
x3 _x2y3 

+ xiy3 ~Vix3 + yix: ~ xiV2        Q 

hence 
du       3v ,4-,       3N: 3N; 

div U   =   — + —   =   >   Uj —!■ + vj —x- 
3x     3y       4-^   ' dx ' 3y 

3N,/3x = (y3 — y2)/Q  is a known constant, and so is  3N,/3y , 3N2/3x ,....   Thus we obtain one homogeneous 
linear equation in each triangle: 

S <*iUj + ftv,   =   0 . 
i=i 

k = 2 .   We need 6 nodal values so we choose the midpoints of the edges and the vertices.   We obtain an 
interpolation of class  C° . 

k = 3 .   We can again choose additional nodes on the edges but we prefer to ensure more continuity by choosing 
as nodal values   u , 3u/3x , du/dy   at the vertices.   The remaining nodal value is taken at the centroid of the triangle. 
We ensure in this way continuity of the first derivatives at every vertex. 

k = 4 .   In order to obtain conforming elements to solve fourth-order problems it is necessary to have continuity 
of the first derivatives on every edge.   This is done in a straightforward way by using at every vertex the nodal values 

du     3u     32u     32u     32 u 
u , — ,   — , 

3x '   3y '   dx2 '   3y2 '   3x3y 

and at the midpoint of every edge the normal derivative   3u/3n . 

Rectangles: The interpolation functions  N(x,y)  are obtained in this case by "tensor product" of the corres- 
ponding one-dimensional functions: 

Ny(x,y)  =  Ni(x)Nj(y). 

Thus we obtain bilinear, bicubic elements. 

1.2.6 Rates of Convergence 

To study the convergence of the finite element method we start from the following basic property of the 
appioximated solution   u^ . 

a(u - uh, u - uh)   =     Min   (a(u - vh, u - vh )] . 
VhGUh 

PtooJ 

The weak solution   u   verifies: 

L(u)   =    Min [a(v — u, v — u) — a(u,u)| . 
v6U 

The discrete solution   uh   verifies: 

L(uh)   =      Min   (a(u - vh, u - vh) - a(u.u) 
vheUh 

So we have: a(u — u^, u — uj,) — a(u,u)   <   a(u — vh, u — v^) — a(u,u) . 

For all   Vh  € Un .   This proves the assertion. 

In other words   uh(resp. u)   is the best approximation of  u   in   U|}(resp. U)   with the norm   || w||2 = a(w,w) . 
This is the so-called energy norm. 
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To study the convergence we proceed in three steps: 

(a) Examine how we can approach in various norms any function   u   by a finite element approximation   U^ . 

(b) Apply the previous results to estimate the error in the energy norm. 

(c) Estimate the error in other norms. 

(a)    First step 

The norms to be used are the so-called Sobolev norms or  Hm   norms: 

HullJ,   = £     ll^ul'dx. 
Jft laKm 

Here  a  is a multi-index  a = (a,,...,^)  with   |a| = a, + ... + a^ , dx = dx,, ...,dxn   is the volume element of 
fiCR". 

Note that: ||u||J   =   J    |u|2dx    is the well-known L2-norm. 

It is difficult to find in each norm the best approximation   uh   of  u .   So we consider only the less good but 
more tractable approximation   uj   obtained by interpolation of  u : 

"iCx)^.  =   E DjUtyNyCx) . 

The goal is to obtain an upper estimate of  ||u — ii[|(m .   It is clear that it is sufficient to consider the effect on 
each element   n8 . 

The standard procedure is to use one of the Taylor expansions of  u : u = p + R  where   p   is a polynomial 
"near"   u   and   R   is the remainder.   Thus, it is important to know the maximal degree of the polynomials   p 
which are preserved by the interpolation process. 

Suppose that   D; , Zj , Nj ;   are chosen so that for all polynomials of degree less than   k   we have: 

p   =   Pj    on    £2j . 

To obtain an upper estimate of ||u — uj||m it is sufficient to obtain an upper estimate of the residual remainder 
||Rj — R|lm . It is clear that this estimate will depend on the diameter h of Hj and the variations of the (k + l)th- 
derivatives of  u .   It is a classical routine to obtain the estimate: 

1/2 

lu-ujL  < ChK' 

We seek an estimate o\ the derivatives of u — Uj ; it is easy to see that, provided the basic functions   Njj   have 
sufficient derivatives, we lose one order of the power of h   for each order of derivative.   So 

i/a 

||u-u,IL   <  Chk + ,-sf   V     f    |D»u|adx 2     Jn.|Dau| 
a=k + i    "» 

(C  are various constants). 

In other words if the interpolation process preserves the polynomials of degree   k   the rate of convergence of 
the s-derivative is of order   k + I — s . 

(b)   Second step 

To prove the existence and the uniqueness of the solution   u   of the continuous problem we must assume for 
a   2m   onler elliptic problem the following inequalities: 

C\\u\\2m   <   a(u,u)   <   CHull^ . 

We have,   u^   being the best approximation: 

a(u-uh, u -uh)  <  a(u-ui, u-uj)  <  Cllu-ujHj, . 
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From the first step we obtain: 

a(u-uh.u-uh)  <  Ch2(k + ,>"2m     ^T     J   10*11 |adx 
|a|=k + i 

Using the coercivity of  a   we have: 

|u-uh| II! 
<  Chk + l"m ( y      f   |Dttu|2dx\ 

So we can say that // k + 1 > m   the f.e.m. converges with a rate of convergence   k + I — m   in the energy 
norm. 

The condition   k + 1 > m   is called the constant strain condition. 

(c)    Third step 

At this point we know only the rate of convergence of the  m-th derivatives.   We can expect to have for the 
values of  u   a rate of convergence of order   k+1—m + m = k + l   as in the interpolation.   This is not quite 
true because   uj,   is the best approximation of  u   only in the energy norm and it is possible to obtain in another 
norm a rate of convergence less good than those obtained by interpolation. Precisely, we have the following result 
(see Strang43). 

If the order of the derivatives of u — u^   is greater than   2m — k — 1   we have: 

||u-uh||s   <  Chk + ,-s|ulk + 1   for   s  >   2m-k-l. 

This is the expected rate of convergence. 

But if the order of the derivatives  u — u^   is less than   2m - k — 1  we cannot obtain better than 2(k + 1 — m) 
fpf any order of derivative   s : 

u-uh||   <  ttafr+l"n,>|nlk+1   for  s <   2m-k-l . 

( y i ID°UI
2

<IX] . 
Here: v 

tu|k+, 

The following conclusions can now be drawn: 

(a) to improve convergence it is necessary to use finite elements of higher degree, 

(b) to ensure convergence it is necessary to use finite element of such degree that   k + I > m . 

For example in the case of fourth order problems (m = 2) it is necessary to preserve polynomials of degree 2. 
The obtained rates of convergence are: 

||u-uh||2   <  Ch|u|3 

||u-uh||,   <  Ch2|u|3 

||u-uh||0  <  Ch2|u|3 . 

Note that for values of  u   we cannot obtain a better rate of convergence than for the values of derivatives. 

f.2 7 Choice of (he Quadrature Formulae 

For elements of high degree or for curved elements it is not possible to compute precisely the coefficients of 
the stiffness matrix; it is necessary to use some quadrature formulae to compute these numbers.   This procedure will 
induce errors and the problem is to choose quadrature formulae so as to obtain the expected accuracy in the solution. 

First we introduce some definitions concerning quadrature formulae. 

To compute 

I   =   J   f(x)dx 
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whore   D   is a given domain of  Rn   (generally a simple one),   dx   the differential element   dx, .. dxn   and   f  any 
function, we use nodes  £,,£2 £m   belonging or not to   D , and compute the weighted sum: 

*, m 
I   =   £ Wif(fc) . 

i=i 

The accuracy of the formula is estimated by the maximal degree  q   of the polynomials for which   1 = 1. 
The number of nodes  £{   increases with the degree  q .   For   n = 1 , if the nodes  £,,..£m   are given, we 
can choose the weights  w, wm   to maximize the accuracy   q , or for a given   q   to minimize some measure 
o( the residual error. 

For  n > 1   the same problems are not yet completely solved.  The formulae used in these cases are product 
formulae derived from the unidimensional case. 

The key result is if the piecewise polynomials used on every finite element are of degree k — 1 and if the 
quadrature formulae is exact up to a degree q the error in the minimization of a quadratic functional in which 
appear derivatives up to order  m , is of order  2(q — k + m + 2) . 

Thus, to converge we must precisely integrate the derivatives of order  m   of the shape functions.   Note that 
it is not necessary for convergence precisely to integrate the square of the m-th derivatives, but obviously this 
involves a loss of accuracy.   Each increase in the order of the formulae used gives an additional power on the rate 
of convergence.   Note also that we need to obtain a positive definite stiffness matrix after numerical integration. 
This condition is often more difficult to verify. 

('urveci eh 

Until now the elements have been triangles or rectangles.   In order to obtain greater accuracy in the approx- 
imation of the domain and of the boundary conditions we introduce elements with curved boundaries.   We shall 
again use the example (1.1)  to explain how to obtain curved elements by changing the space-coordinates   x,y 
into new ones a, ß. 

The goal is to formulate the problem in a new domain   R   that is simpler than the previous one.   For this it is 
iry to have a bijection   x(a, 0), y(a, ß)  between   ß  and   R. 

We choose as  R  a rectangle   [0,1 ] x \0ßo\   and subdivide   dft   into the four curves  T,, r2, .r3. T4. corres- 
ponding to the four sides of the rectangle. 

Given the following parametric representation of the curve   r{: 

x = fj (s) , y = gj (s)        0 < s < Sj 

We impose the following boundary conditions on the bijection: 

x(a,0)   =   f/SjC*).    y(a,0)   =  g,(S,a)    0 < a < 1 

x(l,/3)   =   f2 (s2 I).    y(l,0)  =  g2 (s2 p\ 0 < ß < ß0 

x(a.l)   =   f3(S3a).    y(«,l)  =  g3(S3a)    0 < a <  1 

x(O,0)   =   f4 (s4 Pj,    y(O,0)   =   g4 (s4 j-\ 0 < ß < ß0 . 

At this stage it is not necessary to state the bijection precisely.   It is enough to be sure that it exists and is sufficiently 
smooth. 

We subdivide   R   into elements with linear sides. 

For example, we choose a step   h  and   ß0   so that: 

I a 
K 

N'     ß>   =   N 
"   ::   77-      ßo   - 
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We subdivide   R   into triangles the sides of which lie on the lines: 

a  =   nh 
ß  =   kh 

a + ß  =   1 

0 < n < N 
0 < k < K 
0 < 1  < Max(N.K) 

0o = Kh 

c Pi 

\ 
\\ 

\ 

\ \ 

Nh= 1 

At the vertex   i   we call   Pj   the interior of the polygon which is the union of the triangles  Tj, ,Ti2 ,Tj3,Ti4,Tj5 ,TJ6 

with the common vertex   i .   Subsequently we omit the index   i   when the omission will not cause confusion.  We use 
on   Pj the interpolation functions  i7j(a,/3)   verifying: 

Vfato  =   0    if    (a,0)£Pj 

^(Opßj)   =   1    if    (Ofpßj)    are the coordinates of vertex   i. 

The restriction of  Tjj   on each triangle   Tj   is the basic function   Nj   defined with triangular elements (k = 1). 

Here we use Galerkine's method directly.   Let: 

uh = Cnj(«,0)uj 

be the approximate solution.   Using the weak form of the Neumann problem (1.1.2), we find the equations: 

SajjUj   =   fj 

where: 

^-JLfi&*&a« 
f,   =   J/n fnjdxdy. 

Using the variable  a, ß   we obtain the following expressions for  a«   and   fj : 

,J        JJRy   da 3a \3a  3/3       3/3   3a/ 

fi   =   JJ   ^Jdad/3 

+ c^i33)dad/3 
3/3   3/3/ 

where 
3x 3y     3x 3y 
da 3/3      3/3 da 

A   = 
UV   + U/jJ 
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/U 3X     3y 3_y\ / 

Vdct 3/3      da 30// 

We now explain how to obtain the bijection   x(a,0), y(a,0).   The simplest procedure is to give a bijection 
between the nodes j   in   R   and arbitrary nodes in   12 .   By interpolation we can deduce the functions  x(a,/3), y(a,/3). 
It is ink-resting to use further interpolation   x(a,0), y(a,0), the same formula of the finite element method used to 
compute   Uh(a,0).   In the (x,y) plane we obtain the so-called isoparametric elements.   When we use as nodal values 
derivative! of  U   we take the same nodes but we use the values of  x   and   y only as nodal values.   Thus the degree 
of the polynomials used in the interpolation of  x   and   y   is lower than the degree of the polynomials used in the 
interpolation of  u .   In this case, we obtain the so-called sub-parametric elements. 

Another more elaborate technique consists of giving the bijection between the boundaries   3H   and   3R   and 
making some analytic continuation in   ft .   For example we suppose  a(x,y)  and  j3(x,y)   to be harmonic functions, 
and deduce the equations verified by   x(a,0), y(a,/3).   Here we have only to solve two Dirichlet problems. 

2. APPLICATIONS TO FLUID DYNAMICS 

2.1 Introduction 

Many methods are available for the solution of fluid dynamics problems, and frequently they use finite difference 
techniques.   When an accurate definition of the domain is required (e.g. calculus of a pressure coefficient along a wing) 
a finite element technique is generally recommended.   Nevertheless another method exists which provides an 
equivalent precision and is equally simple; this is the so-called "method of singularities".   When the fundamental 
solution is known (as in the case of potential flow) this method leads to the solution of a smaller problem because 
the boundary conditions alone are approximate.   In addition, particular conditions such as conditions on the trailing 
edge, or at infinity, are easily imposed.   From this it follows that, for potential flows, the method of singularities is 
pater able to the finite element method.   On the other hand when the problem is inhomogeneous or when the 
fundamental solutions are not known straightforwardly the finite element method is to be prefered. 

We do not introduce examples about incompressible irrotational flow:  numerous cases are treated in References 
3. 5. o. 7. Instead, we limit ourselves to a brief survey of the method of singularities.   Then, in connection with the 
Stokes problem and Navier-Stokes equations, we introduce a discussion of the most significant uses of the finite 
element method in fluid dynamics problems. 

2.2 Method of Singularities 

Consider two-dimensional incompressible irrotational flow around an airfoil in a uniform stream   U«, .   The 
perturbation potential for perturbation velocities is an harmonic function independent of time in a reference system 
relative to the airfoil   SI .   On the boundary of the profile the slip condition is written as: 

34> 

dn 
=   -Uoo-n (I) 

where   n   and   34>/dn   represent the outward normal unitary vector and the normal derivative of the function   * . 
In order to obtain lift, we need to impose a circulation around the airfoil by the Kutta condition.   The boundary 
3£2   of the body is represented by   N   straight elements on each of which a constant distribution of singularities is 
taken as acting.   At a point with affix   z   the complex potential   f(z)   induced by a density (a(t) + i7(t)) of 
singularities along   3H   is given by: 

f(z)  =   — /     {o(t) + i-y(t)} log (z - t)dt . 

The unknowns  o(t) + i-y(t)  are determined by the boundary condition (I) 

For a linear element   3£2: C 3ft , with an origin   Zj_, , and end   Zj , a length   2a   and an angle of inclination 
0j   measured from the positive x-axis, we note that   a] + \y  is the density of singularities.   (It is possible to impose 
tne Kutta condition, with 7 constant along 3ft.)   The associated potential is given by 

f(z)   =   rE(öj + 17) /      log(z-t)dt 
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and the velocity by 

♦iw - ML« = is (0j+iT)ew-"i) I.. g :;£%!;. « 
) 

(Z-Zj)C 

The quantities  *s(z), <f>J,(z)  represent the derivatives of  4>  in the direction  0  and  0 + TT/2  with respect to 
the x-axis. 

We choose   N  control points  n:   at the midpoint of each segment   dßj   and because we assume the Kutta 
condition we choose an extra point   17^ + ,   located on the bissector at the trailing edge.   By satisfying Equation (1) 
exactly at the   N + 1   control points we obtain through the relation (2) a system of  N + 1   linear equations for 
the   N + 1   unknowns:   (a,,...,0^,7}.   This system is solved by the normal techniques of elimination or iteration. 
After having found   o}   and  7  we may establish the complete flow pattern, in particular the tangential velocity 
and the dynamic pressure. 

2.3   The Stokes Problem; Solenoidal Element 

Consider the motion of an incompressible viscous fluid within the limits of the Stokes approximation.   The 
equations can be written 

dp 
dx 

-/iAu + ^- =   fx 

3p 

dy 
-/IAV + ;       =   fy 

9u      dv 
— + —  =   0 
3x      dy 

where      u,v are the velocity components in the   x,y  directions, 
M is the kinematic viscosity, 
p is the pressure, 

fx , fy are the components of the external forces. 

These equations are to be solved in a domain Q. with the velocities prescribed on the boundary   dß .   Note we 
have no condition for the pressure along the boundary   dft .  The above problem has a unique solution. 

We give now a simple example of the use of the solenoidal elements in solving the Stokes problem.   Often this 
process is much more complicated, but this simple example serves to illustrate the general principle. 

According to a standard procedure the domain   H   is partitioned into triangular subdomains and the unknown 
velocity and pressure fields are approximated throughout  ft   by means of the following equations: 

u  = S Ni(x,y)uj 
i 

v  =  S Ni(x,y)Vi 
i 

P  = 21 Mj(x,y)Pj . 

The nodal values  Uj, v4  correspond to the node   i   while the nodal value  Pj   is associated with a node j   which 
can be different from the former.   Let us denote by 

ajk    1 < k < 3   the vertices of a triangular subdomain   Tj 

bjk    1 < k < 3   the midpoint of the side opposite to the vertex   a;K 

Cj   the centroid of the triangle  Tj 

')k 
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For the velocity components the nodes will be the points  b.k   and for the pressure components the nodes will 
be the points  c: . 

For a node   i   coinciding with   b.k   the shape function   Nj(x,y)   is given by 

Ni(x,y)lT.   =   1 - 2Xjk 

where   \jk   are the barycentric coordinates of a point of coordinate (x,y) with respect to the vertices  ajk   of the 
triangle   T; .   The shape functions are linear on each triangle and are equal to one at the node   b.k .   The nodal 
value   iij   represents the mean velocity along the side opposite to the vertex   a.k .   We note the expressions for u ,v 
are not Continuous throughout the domain; in other words these elements do not conform. 

For a node   i  coinciding with the centroid  Cj   of the triangle   Tj   the shape function   M,(\,\)   is given by 

Mj(x,y)   =   1     if    (x,y)GTj 

Mj(x,y)   =   0    if    (x.y)^Tj . 

The momentum equations are stated in a weak form with the test functions   Nj 

(-pAu + ^ - fj Ni(x,y)dxdy   =   0 

(-/iAv +^-'y) Ni(x,y)dxdy   =   0. 

The continuity equation is aJso stated in a weak form with the test functions  Mj 

f   /du      3v\ 
Jn(^+3-y)Mi(X'y,dXdi'   =   0- 

By using one of Green's formulae these equations are reduced to the system of linear equations: 

SajjUj +SqjPj   =   cj    (1 -a) 

Eayvj +£0^3  =   fj    (i -b) 
j j 

Zl cjjUj + 52 djjVj   =  0    (I - c) 

with 

r   /3Ni dN;      aNj 3NA 

* " Jfi *T Mr 

<4   =   I   fxNidxdy+ J     (^_p/x) Nids 

fj   -    J    fyN|dxdy+   I      (^-p/yJNids 

;dxdy 

idx dy (2) 

Here   /x . L   are direction cosines of the unit outward normal to   d£l . 
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For a node   tv^   on the boundary   dSl  the nodal values  u, v  are prescribed.   The equations   1 — a   and 
1 — b  are not stated for this node. 

For the pressure, the nodes  Cj   do not lie on the boundary   dfi ; so the equation   1 — c   is stated for every 
node  c: . 

If  Nu   is the number of nodal values for the unknown velocities and if  Np   is the number of nodal values for 
the pressure, then the equations   1 — a , 1 — b  give 2.   Nu relations that can be used to calculate the unknown 
velocities while the equation   1 — c  gives  Np   relations we can use to calculate the pressure. 

On the other hand note that the surface integrals in Equation (2) vanish from the definition of the basic 
functions   Nj(x,y). 

We can explain the Equations (1) as a minimizing problem with constraints.   We write 

1  < i < N„ 
A   = 

C   = 

X   = 

(ajj)     (0) 

(0)     (ig) J N„ 

N„ 

1  < j < Nn 

E   = 
( 

1 < i < N„ P  =   [Pjl    1 < j < Np . 

(3) 

(4) 

In matrix notation these Equations (1) are equivalent to 

AX +CP  =   E 

ClX  =   0 

where   Cl   is the transpose of the matrix   C . 

The system (3) results from the minimization of the quantity 

I(X,P)   =  Ax1 AX - XlE + PlC!X . 

AX   =  C 

In other words we must minimize  $XlAX — XlE 

with the supplementary constraints 

ClX   =   0. 

The pressure   P  appears throughout the Equation (4) as a Lagrange multiplier. 

System (3) may be solved by the use of Uzawa's algorithm which can be briefly described as 

(a) we choose P°   arbitrarily 

(b) we solve the problem 

AXn + 1 + CP"   =   E 

(c) we modify the pressure by 

pn + i   «   pn _eCtxn + » 

(e is a small parameter). 

We can demonstrate that in the case of Equations (3) this algorithm is convergent. 

The elements defined by the relations (3) are not precise.   Solenoidal elements may be introduced in order to 
improve the approximation and to avoid the presence of pressure term in the equations to solve. 

The weak form of the Stokes problem is equivalent to: 

Find the velocity   uEV  so that: 
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a(if,w) = (7,w)  for all   w G V  where   u\7, w  are vectors with components (u,v), (fx,fy), (wx,wy) 

_>_*. ff   /du dwx      dv dwv      du dwY      dv dwv\ 
afiT.v)   =  p. (__JS + _^ + -_ü + -_^) dxdy 

JJfi \dx dx        dx dx        dy dy        dy dy / 

(7,w)   =    jj   (fxwx + txwy)dxdy 

and   V   is the space of vector-valued functions  v   defined by: 

V   =   {"v7vG(Ht(n))2,'vlr = 0. div v" = 0} . 

The condition of incompressibility is carried into the definition of the space to which the solution belongs. 
The construction of space   V^   which approximates   V  is made by weakening the condition   divv" = 0 .   This 
theoretical matter is treated in detail in References 13 and 18. 

2.4   Application to the Navier-Stokes Equations 

For the resolution of the Navier-Stokes equations: 

du du du I dp     v /d2u      d2u\ 
— + U  +V   = - + -( r + —r) 
dt dx        dy p dx     p \dx2      dy2/ 

dv dv dv 1 dp     P /d2v      d2v\ 
— 4-u — + v— = -+-(—r + —r) 
dt dx dy p dy     p \dx2      dy2/ 

(I) 

du      dv 
— + —   =   0 
dx      dy 

three finite elements techniques may be used: 

(a) the Navier-Stokes equations may be treated directly by Galerkine's method; References 23, 29,30,31,32,38. 

(b) vorticity and stream function may be determined: References 6, 7,8, 10, 11,12. 

(c) the condition of incompressibility may be introduced in the space solution; in fact this is an extension of 
the method described in paragraph 2.3: Reference 13. 

2.4.1 Method for Solving Using Navier-Stokes Equation Directly 

We list.- triangular elements and continuous shape functions N: linear on each triangle. Serious difficulties will 
he encountered in the consideration of the pressure on a wall. A solution, not necessarily the best, consists of using 
the momentum equations written on the wall in order to obtain the value of the pressure gradient and therefore the 
value of the pressure on the wall. 

We construct an approximate solution of the form: 

u  = ZI Nj(x,y)uj(t) 

v   = 5 Nj(x,y)vj(t) 

P  = Z Nj(x,y)pj(t) . 

By Galerkine's method and from Green's formula, Equations (1) are reduced to the differential system 

X eij Jp + £ Si.iuj + ? hxijPj   =   cxj ( 2a ) 
j J J 

X e..i H? + s Vi + ? h>jipJ = c^' '2b) 
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where 

dxdy 

ZI hxjiuj + SI hyjiVj   =   0 (2c) 

eij   =   //nPNiNjdxdy 

^ /dN; 3N:      \ /3N; 3N:       3N; 3NA 

cxi = LNiS_p'»)ds 

c
" = L N' (£ - p'y)ds • 

Here  /x, /y   are direction cosines of the outward normal   n   to (ft).   For elements not contiguous to (d£2) the 
terms  cxi   and   cyi   are equal to zero. 

Three cases of physical boundary conditions are easily introduced. 

(a) Nodal values  u,   and   vj   are prescribed at node   i .   The Equations (2a) and (2b) are not stated for the 
node   i. 

(b) Nodal value   ps   is known at node   i .   The Equation (2c) is not stated but the surface integral involving 
p  must be evaluated in  cxi   and   cyi . 

(c) Normal derivatives of u  and   v  are given at node   i.   The surface integral involving   u   and  v  must be 
evaluated in   cxi   and   cyi . 

Many problems may be solved from Equations (2). 

(a) Linearized steady flows (Oseen approximation) 

In this case the unsteady terms disappear and the quantities  gj;   do not depend on   u;   and   v; . 
Equations (2) are reduced to a linear system of  3N  equations for the   3N   unknowns (U|tV{tpf) and 
there is reason to believe we can develop a mathod to calculate their solution. 

(b) Steady flows - 

In this case Equations (2) form a non-linear system of equations.   For their resolution we can use an 
iterative scheme, e.g.: 

Egnup+Sh^'   =  Cxi 
J J 

szgTjVp +zhyi]p;+i = cyi 
j J 

T* h    uP + 1 + T* h .,vP+l   =   0 4-* "XII   I 4-»    yii i ' 
J J 

If a solution exists, schemes of this type or more refined schemes obtained from Newton's method or from its 
variants, are convergent20,32. 

Unsteady Flows 

We write the Equations (2) in the form of a differential system 
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dy 
j-   =   F(y,t) (3) 
dt 

which is integrated by the Runge Kutta method or by the methods available for stiff differential equations with an 
improved domain of stability.   To obtain form (3) we may choose  y = {Uj,Vj,pj}   or eliminate the pressure and 
take  y = {uj,Vj}.   In the first case we solve Equations (2a) and (2b) in respect to  dUj/dt  and  dvj/dt   and we 
differentiate, the resulting equations with respect to   t. Then we eliminate the term d2Uj/dt2and d2v;/dt2 using 
the Equation (2c) differentiated twice in respect to   t .   In the second case we solve (2a) and (2b) for  du;/dt   and 
dvj/dt ; with such results, Equation (2c) gives the pressure, and we may use it to eliminate the pressure gradient 
from Equations (2a) and (2b).   These two methods are purely formal and in practice we may encounter difficulties 
with initial pressure.   Nevertheless the initial problem often permits the determination of the initial pressure from 
the velocity field.   Of course, when we integrate Equations (3) we are faced with the usual problems of stability: 
these problems are overcome in a heuristic way, except in very specific cases when we can estimate the step time 
At  (Ref.35). 

2.4.2 Method for Solving Using Stream Function and Vorticity 

The continuity equation causes the existence of a stream function   \j/ 

u   =   — ,      v   =  - — . (1) 
dy dx 

We define the vorticity   co  by 

dv      du 

dx     dy 

Taking into consideration equality (1), the relation (2) gives 

Ai//   =   -co . (3) 

The momentum equations are then equivalent to 

dto dco dej        v 
+ u_ + v—=— Aw (4) 

dt dx dy        p 

Ap   =  -pQ (5) 

(du dv      du dv\  1 . 
dy dx      dx dy/ 

We solve this problem using the Equations (3), (4), (5): we divide   ft   into triangular subdomains and use a 
weak formulation.   The discretization of Equation (3) is then different from that of (4) and (5), and therefore we 
shall treat each case separately. 

Determination of the stream function 

In order to solve Equation (4) we need to know the value of the gradient of   \p , rather than the value of   i// 
itself.   We construct the following approximation of   \p : 

Wx.y)   = £{Mf(x,y)Vj + Mf(x,y)*xj + Mj(x,y)*yj . (6) 

As usual the shape functions MJ4 are equal to zero outside of the subdomain j formed by the union of the 
triangles I, . which have the node j as a common vertex. This node j is indexed as the vertex in a triangle Tj . 
The restriction of the shape functions to the triangle is given by: 

M'foy)  =   Xj + 3X2X2 + 3X2X3 + 2X,X2X3 

Mj2(x,y)   =   X2((x2 - x,)X2 + (x3 - x,)X3) - §x,X,X2X3 

M?(x,y)   =  X2«y2 - y,)X2 + (y, - y,)X3) - fy.X.XjX, . 

In the triangle   Tj   with vertices (x,.y,). (x2,y2), (x3,y3),   X,.X2,X3   are the barycentric coordinates of a point 
of cartesian coordinates (x,y). 
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We verify that: 

M 
dM:1 3M;1 

[•(Xj,yi) = 6fj*f   g^Mxi.yi) - 0'     ^^n) = o 

MjCxj.y,)  =  0, 

With relations (7) we note that: 

M?(Xi,yi) = o,      aT^i'Vi) - 6ij>    j? <*•**> :: o 

3M;3 

ay 

3M;3 

d- (WO   =   0 ,        1=1 Uj.Vi)   -   ötj . 

(7) 

a* a* 
*j - 0(xryj).    *xj - aT (xj.yj),    *yj = - (xj,yj). 

The discretization of Equation (3) by the Galerkine method gives three equations at each node   i : 

ZZa^+ZbH^^cK^  =  df       k -   1.2.3 (8) 

with 

k       rr  3M? dMJ5    3M:2 aMJ* b"i=  JJasr1srV3rdxdy 

fc       rp  3M3 3MJ<    3M? 3MH 

(9) 

dj1  =    ff   cjMJ^dxdy . 1        JJn     ■ 

When the vorticity   w  is known, relations (8) represent a system of linear equations which can be written: 

AX   =   B . (10) 

Until now the boundary conditions have not been used; in fact they give a set of supplementary linear equations 
of the type: 

CX   =   D . (11) 

To solve the system of Equations (10) with the constraints (11) we use Lagrange multipliers and we minimize 
the following functional: 

Then: 

1(X)   =   *XlAX~XlB + Xl(CX-D) . 

   =   0 ,      —   =   0 . 
axj a\j 

(12) 

The relations (12) gives us the following system of equations: 

A    Cl 

C     0 

X 
= 

B 

D 

Where  Cl   is the transpose of matrix  C . 

This system is solved, at least on paper, by eliminating the Lagrange multipliers  X 

X  =   (CA-'C'rHCA-'B-D) 

♦ 6, = 0 if ,*j,5H = I. 



X   =   A-'B - A-'cUCA'C'rUCA-'B- D) . 
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(131 

This procedure has the advantage of treating separately the boundary conditions (which can be unsteady) and 
the operator (which is steady).   Matrix  A  can be either assembled and inverted or factorized. 

(ah tthis of vorticity and pressure 

In this case we use the shape functions   Nj(x,y)   piecewise linear on each triangle as defined in 2.3 

w  =  2 Nj(x,y)Wj(t) 

P   =  £ Nj(x,y)Pj(t) 

u   = ZI Nj(x,y)¥xj 
j 

v   = S Nj(x,y)^yj 

The Equations (4) and (5) give us the relations: 

Y dn P+ £ in = ° <14> 
J J 

SlijPj   =   Qi (15) 

where 
dU   =    JL NiNjdxdy Jn 

ff   v   /^   , dN;      ^-r öN\      V /dN; dN;      3N; dNA 
-U   -   JJn 

N{X ^kNk ,3 + X ^ykNk dTiJ %(^ gJ + ^ gj) dxdy 

'J        JJn \3x   dx       3y   dy /       y 

Qj   =   fj   qNjdxdy . 

Numerical integration 

The numerical integration of these equations can be made by Runge Kutta algorithms.   For example from 
Heun's method we know the velocities and the vorticity at time   t = 0 .   From Equation (14) we deduce the value 
cj,   of the vorticity at an intermediate time   At/2 .   The solution of Equations (10) yields the velocity field at 
time   At/2 .   By repeating this operation at time   At , we obtain a value   co2   for the vorticity.   By classical 
combination we obtain the final value of co  at time   At , from which we compute the original value of the 
velocities.   During this procedure the boundary value of  to   is readjusted from Equations (3) and (6) as in finite 
difference methods.   Finally the procedure given in 2.4.1 is used to obtain boundary conditions for the pressure, 
and Equations (15) give the pressure field.   The choice of the step of integration   At   is important for the stability 
of the algorithm and in the present state of knowledge this choice must be heuristic.  Thus, finally we obtain an 
approximation of the unsteady pattern of fluid flow. 

CONCLUSION 

Generally the finite element method offers a systematic procedure on which to build schemes of high accuracy. 
Moreover the representation of the boundaries can be performed as accurately as is required. 

This method was first used in structural analysis and has proved to be very successful.   In fluid dynamics the 
matter is more complex. 
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For external potential flows of incompressible fluids the method of singularities (which can be considered as a 
particular case of the finite element method) works very well. On the other hand, lor internal problems or for free 
surface flows the finite element method is preferable. 

For incompressible fluids within the limits of the Navier-Stokes equations certain algorithms have been proposed. 
However, in most cases the problem of computing the pressure or the vorticity at the wall remains open. 

For compressible fluids, successful methods have been developed for the case of subsonic or locally supersonic 
shock-free inviscid flows.   For the case of supersonic flow it is as yet difficult to ensure that discrete problems 
obtained are relevant. 

Finally formulations have been written for the case of compressible Navier-Stokes equations but to our know- 
ledge these have not yet been applied practically. 
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